Sigma Delta A/D Conversion for Signal Conditioning by Kathleen PhilipsSigma Delta A/D Conversion for Signal Conditioning by Kathleen Philips

Sigma Delta A/D Conversion for Signal Conditioning

byKathleen Philips, Arthur H.M. van Roermund

Paperback | November 19, 2010

Pricing and Purchase Info

$220.95

Earn 1,105 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

1.1 Background Moore's Law predicts a decrease by a factor of two in the feature size of CMOS te- nology every three years and has been valid for years. It implies a doubling of the - eration speed and a four times higher transistor count per unit of area, every three years. The combination leads to an eight times higher processing capability per unit of area. This on-going miniaturization allows the integration of complex electronic systems with millions of transistors (Very-Large-Scale-Integration) and enables the integration of el- tronic systems. An electronic system A generic picture of an integrated electronic system is shown in ?g. 1.1. The heart of the system is the signal processing core. This core supports a wide variety of functions, such as customization and programmability of multiple applications, channel coding, the de?nition of the user interface, etc. These functions are enabled by DSP, a controller CPU and various blocks of memory. In advanced ICs these blocks provide (almost) all signal processing and usually dominate in the overall power and area consumption of integrated systems. The huge data rates involved, require high-speed busses for communication between these blocks. A power-management unit fuels the system by providing the - propriate supply voltages and currents.
Kathleen Philips was born in 1972, in Aalst, Belgium. In 1992 and in 1995, respectively, she obtained the B. Sc. and the M. Sc. degree in Electrical Engineering from the "Katholieke Universiteit Leuven" in Belgium. The graduation project was on the design of monolithic microwave ICs based on HEMT-transistors.In the summer of 1993, she ...
Loading
Title:Sigma Delta A/D Conversion for Signal ConditioningFormat:PaperbackDimensions:278 pagesPublished:November 19, 2010Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048171695

ISBN - 13:9789048171699

Look for similar items by category:

Reviews

Table of Contents

List of symbols and abbreviations

1 Introduction

1.1 Background

1.1.1 Anelectronicsystem

1.1.2 Digital signalprocessing

1.1.3 Digitizationof signal conditioning

1.1.4 Digitization of inter-die interfaces

1.2 Aim of this thesis

1.3 Scope

1.3.1 BasebandA/Dconditioning channels

1.3.2 Continuous-time single-bit sigma-delta conversion

1.3.3 CMOS technology

1.3.4 Power consumptionas cost parameter

1.3.5 Performance parameters

1.4 Outline

2 The signal conditioning channel

2.1 Generic communication channel

2.2 Performance parameters

2.3 Conventional conditioning channels

2.4 Evolution

2.4.1 Technology advances

2.4.2 Systemdemands

2.4.3 Advances in digital signal processing and analog circuit design

2.4.4 Digitizationof the architecture

2.5 Nomenclature

2.6 Conclusions

3 Sigma delta A/D conversion

3.1 Historical overview

3.2 State-of-the-art in sigma delta A/D conversion

3.2.1 Architectural considerations

3.2.2 Implementation aspects

3.2.3 Performance metrics for sigma delta ADCs

3.3 sigma delta ADCs infuture conditioning channels

3.3.1 The Shannon theorem and sigma delta based signal conditioning

3.3.2 Comparison of Nyquist and sigma delta based signal conditioning

3.3.3 Survey of published power/performance values

3.4 Limitations of sigma delta A/D conversion

3.4.1 Linear limitations

3.4.2 Non-linear limitations

3.5 Conclusions

4 Power consumption in channel building blocks

4.1 Literature on power/performance analysis

4.2 Figures-of-merit

4.2.1 FOM related to thermal noise

4.2.2 FOMincluding distortion

4.2.3 FOM related to signal resolution

4.3 Power consumption in analog conditioning circuits

4.3.1 Power/performance relations

4.3.2 Discussion

4.4 Power consumption in a sigma delta ADC

4.4.1 Power/performance relations

4.4.2 Discussion

4.5 Power consumption in digital conditioning circuits

4.5.1 Filter functions

4.5.2 Power/performancerelations

4.5.3 Discussion

4.6 Comparison

4.7 Conclusions

5 Full-analog and full-digital conditioning channels

5.1 Full-analog conditioning channel

5.1.1 The conditioning channel

5.2 Full-digital conditioning channel

5.2.1 The conditioning channel

5.2.2 Power/performance analysis

5.3 Conclusions

6 Conditioning sigma delta ADCs

6.1 Generic conditioning sigma delta ADC

6.1.1 Conceptofoperation

6.1.2 Universal model of a sigma delta modulator

6.1.3 Interferer immunity

6.1.4 Power/performance analysis

6.2 Signal conditioning in the decimation filter

6.2.1 Interferer immunity

6.2.2 The conditioning channel

6.2.3 Power/performance analysis

6.3 Signal conditioning with a restricted filtering STF

6.3.1 Interferer immunity

6.3.2 The conditioning channel

6.3.3 Power/performance analysis

6.3.4 Conditioning hybrid sigma delta ADC

6.4 Signal conditioningbyunrestrictedSTFdesign

6.4.1 Interferer immunity

6.4.2 The conditioningchannel

6.4.3 Power/performanceanalysis

6.5 Comparisonof conditioningADCs

6.5.1 Comparison of topologies

6.5.2 Flexibility

6.5.3 Power consumption

6.5.4 Guidelines

6.6 Conclusions

7 Digitization of the inter-die interface

7.1 Considerations

7.2 Power inthe interface

7.2.1 Analoginterface

7.2.2 Digital interface after decimation

7.2.3 Digital interface before decimation

7.2.4 Comparison

7.3 Application to the conditioning channels

7.4 Conclusions

8 Highly analog and highly digital channels for FM/AM radio

8.1 System

8.1.1 Conventional radio with analog demodulation

8.1.2 Radio with digital demodulation

8.2 VGAdesign

8.2.1 HighlylinearVGAdesign

8.2.2 Evaluation

8.3 ADCdesign

8.3.1 Conventionalsolutions

8.3.2 sigma delta ADC with integrated passive mixer

8.3.3 Evaluation

8.4 Evaluationof the channel

8.4.1 Discussion

8.4.2 Benchmark

8.5 Conclusions

9 Conditioning sigma delta ADCs for Bluetooth

9.1 System

9.1.1 Conventional radio with analog demodulation

9.1.2 Radio with digital demodulation and analog signal-conditioning

9.1.3 Radio with digital demodulation, without analog signal conditioning

9.2 Feed forward sigma delta ADC

9.2.1 Design

9.2.2 Evaluation

9.3 Conditioning feedback sigma deltaADC

9.3.1 Design

9.3.2 Evaluation

9.4 FFB-ADC

9.4.1 Design

9.4.2 Evaluation

9.5 Evaluationof the channels

9.5.1 Benchmark with published ADCs

9.5.2 Comparison of the presented ADCs

9.5.3 Benchmark with published Bluetooth conditioning channels

9.6 Conclusions

10 General conclusions

A Overview of published sigma delta ADCs

B Power/performance relation of analog circuits

B.1 Simple differential pair

B.2 Differentialpair in aglobal feed-back configuration

B.3 Degenerated differential pair

C Power/performance relation of digital filters

C.1 Analysis of the filter topology

C.2 Calculation of filter parameters

C.3 Calculation of powerc onsumption

C.4 Extensionto other implementations

D Third-order distortion in analog circuits and sigma delta ADCs

E Power consumption in a data interface.

E.1 Analogdata interface.

E.2 Digital data interface

References

Original contributions

List of publications

Summary

Samenvatting

Dankwoord

Biography