Smart Antennas for Wireless Communications: With MATLAB

Hardcover | September 14, 2005

byFrank Gross

not yet rated|write a review
Smart antennas boost the power of a wireless network, saving energy and money and greatly increasing the range of wireless broadband. Smart Antennas is a rigorous textbook on smart antenna design and deployment.

Pricing and Purchase Info

$131.17 online
$136.95 list price
In stock online
Ships free on orders over $25

From the Publisher

Smart antennas boost the power of a wireless network, saving energy and money and greatly increasing the range of wireless broadband. Smart Antennas is a rigorous textbook on smart antenna design and deployment.

From the Jacket

A Complete Overview of the Basic Electromagnetics, Propagation, and Signal Processing Behind Smart Antenna DesignThis advanced level text and reference thoroughly details the operating principles of smart antennas and utilizes a multidisciplinary approach to achieve a more comprehensive understanding of this growing subject. An equal ...

Frank Gross, Ph.D. (Tallahassee, FL) is Associate Professor of Electrical Engineering at Florida State University. He previously served as Lead Engineer for the Mitre Corp. and a Senior Research Engineer at the Georgia Tech Research Institute. He holds a Ph.D. in Electrical Engineering from Ohio State University, has authored over 50 p...

other books by Frank Gross

Science and Emotions after 1945: A Transatlantic Perspective
Science and Emotions after 1945: A Transatlantic Perspe...

Kobo ebook|May 22 2014

$40.49 online$52.49list price(save 22%)
Smart Antennas with MATLAB, Second Edition: Principles and Applications in Wireless Communication
Smart Antennas with MATLAB, Second Edition: Principles ...

Kobo ebook|Feb 9 2015

$126.39 online$164.04list price(save 22%)
Frontiers in Antennas: Next Generation Design & Engineering
Frontiers in Antennas: Next Generation Design & Enginee...

Kobo ebook|Dec 22 2010

$136.49 online$177.17list price(save 22%)
Format:HardcoverDimensions:350 pages, 9.3 × 6.4 × 0.84 inPublished:September 14, 2005Publisher:McGraw-Hill EducationLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:007144789X

ISBN - 13:9780071447898

Look for similar items by category:

Customer Reviews of Smart Antennas for Wireless Communications: With MATLAB


Extra Content

Table of Contents

1. Introduction

1.1. What is a Smart Antenna?

1.2. Why Are Smart Antennas Emerging Now?

1.3. What are the Benefits of Smart Antennas?

1.4. Smart Antennas Involve Many Disciplines

1.5. Overview of the Book


2. Fundamentals of Electromagnetic Fields

2.1. Maxwell's Equations

2.2. The Helmholtz Wave Equation

2.3. Propagation in Rectangular Coordinates

2.4. Propagation in Spherical Coordinates

2.5. Electric Field Boundary Conditions

2.6. Magnetic Field Boundary Conditions

2.7. Planewave Reflection and Transmission Coefficients

2.7.1. Normal Incidence
2.7.2. Oblique Incidence

2.8. Propagation Over Flat Earth

2.9. Knife-Edge Diffraction



3. Antenna Fundamentals

3.1. Antenna Field Regions

3.2. Power Density

3.3. Radiation Intensity

3.4. Basic Antenna Nomenclature

3.4.1. Antenna Pattern
3.4.2. Antenna Boresight
3.4.3. Principal Plane Patterns
3.4.4. Beamwidth
3.4.5. Directivity
3.4.6. Beam Solid Angle
3.4.7. Gain
3.4.8. Effective Aperture

3.5. Friis Transmission Formula

3.6. Magnetic Vector Potential and the Far Field

3.7. Linear Antennas

3.7.1. Infinitesimal Dipole
3.7.2. Finite Length Dipole

3.8. Loop Antennas

3.8.1. Loop of Constant Phasor Current



4. Array Fundamentals

4.1. Linear Arrays

4.1.2. Two Element Array
4.1.3. Uniform N-Element Linear Array Broadside Linear Array End-Fire Linear Array Beamsteered Linear Array
4.1.4. Uniform N-Element Linear Array Directivity Broadside Array Maximum Directivity End-Fire Array Maximum Directivity Beamsteered Array Maximum Directivity

4.2. Array Weighting

4.2.2. Beamsteered and Weighted Arrays

4.3. Circular Arrays

4.3.2. Beamsteered Circular Arrays

4.4. Rectangular Planar Arrays

4.5. Fixed Beam Arrays

4.5.2. Butler Matrices

4.6. Fixed Sidelobe Canceling

4.7. Retrodirective Arrays



5. Principles of Random Variables and Processes

5.1. Definition of Random variables

5.2. Probability Density Functions

5.3. Expectation and Moments

5.4. Common probability density functions

5.5. Stationarity and ergodicity

5.6. Autocorrelation and power spectral density

5.7. Correlation matrix



6. Propagation Channel Characteristics

6.1. Flat Earth Model

6.2. Multipath Propagation Mechanisms

6.3. Propagation Channel Basics

6.3.1. Fading
6.3.2. Fast Fading Modeling
6.3.3. Channel Impulse Response
6.3.4. Power Delay Profile
6.3.5. Prediction of Power Delay Profiles
6.3.6. Power Angular Profile
6.3.7. Prediction of Angular Spread
6.3.8. Power Delay-Angular Profile
6.3.9. Channel Dispersion
6.3.10. Slow Fading Modeling

6.4. Improving Signal Quality

6.4.2. Equalization
6.4.3. Diversity RAKE Receiver
6.4.4. Channel Coding
6.4.5. MIMO



7. Angle-of-Arrival Estimation

7.1. Fundamentals of Matrix Algebra

7.1.2. Vector Basics
7.1.3. Matrix Basics

7.2. Array Correlation Matrix

7.3 AOA Estimation Methods

7.3.1. Bartlett AOA Estimate
7.3.2. Capon AOA Estimate
7.3.3. Linear Prediction AOA Estimate
7.3.4. Maximum Entropy AOA Estimate
7.3.5. Pisarenko Harmonic Decomposition AOA Estimate
7.3.6. Min-Norm AOA Estimate
7.3.7. MUSIC AOA Estimate
7.3.8 Root-MUSIC AOA Estimate
7.3.9 ESPRIT AOA Estimate



8. Smart Antennas

8.1. Introduction

8.2. The Historical Development of "Smart Antennas"

8.3. Fixed Weight Beamforming Basics

8.3.1. Maximum Signal-to-Interference Ratio
8.3.2. Minimum Mean-Square Error
8.3.3. Maximum Likelihood
8.3.4. Minimum Variance

8.4. Adaptive Beamforming

8.4.1. Least Mean Squares
8.4.2. Sample Matrix Inversion
8.4.3. Recursive Least Squares
8.4.4. Constant Modulus
8.4.5. Least Squares Constant Modulus
8.4.6. Conjugate Gradient Method
8.4.7. Spreading Sequence Array Weights Description of the New SDMA Receiver Example using bi-phase chipping