Solid State NMR Spectroscopy for Biopolymers: Principles and Applications by Hazime SaitôSolid State NMR Spectroscopy for Biopolymers: Principles and Applications by Hazime Saitô

Solid State NMR Spectroscopy for Biopolymers: Principles and Applications

byHazime Saitô, Isao Ando, Akira Naito

Paperback | November 25, 2010

Pricing and Purchase Info

$237.87 online 
$271.95 list price save 12%
Earn 1189 plum® points

In stock online

Ships free on orders over $25

Not available in stores

about

When considering the biological significance and industrial and medical applications of biopolymers, it is crucial to know details of their secondary structure, dynamics and assembly. The biopolymers include globular, membrane and fibrous proteins, polypeptides, nucleic acids, polysaccharides and lipids. Solid state NMR spectroscopy has proved to be the most suitable and unrivaled means for investigations of biopolymers. The major advantage of solid state NMR spectroscopy is that the resulting line widths can be manipulated experimentally and are not influenced by motional fluctuation of proteins under consideration as a whole. Solid State NMR Spectroscopy for Biopolymers: Principles and Applications provides a comprehensive account on how the conformation and dynamics of such biopolymers can be revealed by solid state NMR spectroscopy. Special efforts have been made towards the historical and chronological consequences of a variety of applications and the dynamic aspects of the biopolymer system. In particular, the authors emphasise how important it is to record the most simple DD-MAS (one pulse excitation with high power decoupling) as a mean of locating very flexible portions of membrane proteins and membrane associated peptides. The authors also demonstrate that dynamic features of membrane proteins with a timescale of fast (108 Hz) and intermediate (104 -105 Hz) fluctuation motions can be revealed easily by specific suppression of peaks.
Title:Solid State NMR Spectroscopy for Biopolymers: Principles and ApplicationsFormat:PaperbackDimensions:477 pagesPublished:November 25, 2010Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048171008

ISBN - 13:9789048171002

Look for similar items by category:

Customer Reviews of Solid State NMR Spectroscopy for Biopolymers: Principles and Applications

Reviews

Table of Contents

Part I  Principles1. Introduction2. Solid state NMR approach  2.1. CP-MAS and DD-MAS NMR 2.2. Quadrupolar nuclei 3. Brief outline of NMR parameters   3.1. Chemical shifts  3.2. Relaxation parameters 3.3. Dynamics-dependent suppression of peaks4. Multinuclear approaches 4.1. 31P NMR 4.2. 2H NMR   4.3. 17O NMR5. Experimental strategies  5.1. Isotope enrichment (labeling) 5.2. Assignment of peaks  5.3. Ultra high-field and ultra high-speed MAS NMR spectroscopy6. NMR constraints for structural determination   6.1. Orientational constraint 6.2. Interatomic distance 6.3. Torsion angles 6.4. Conformation-dependent 13C chemical shifts  7. Dynamics 7.1. Fast motions with motional frequency >106 Hz 7.2. Intermediate or slow motions with frequency between 106 and 103 Hz 7.3. Very slow motions with frequency <_20_10320_hz0a_c2a0_0a_0a_part20_iic2a0_20_applications0a_0a_8.20_hydrogen20_bonded20_systems0a_c2a0_8.1.20_hydrogen20_bond20_shifts0a_c2a0_8.2.20_2h20_quadrupolar20_coupling20_constantc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_20_0a_0a_9.20_fibrous20_proteinsc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_20_0a_c2a0_9.1.20_collagen20_fibrilsc2a0_20_0a_c2a0_9.2.20_elastin0a_c2a0_9.3.20_cerial20_proteins20_0a_c2a0_9.4.20_silk20_fibroin0a_c2a0_9.5.20_keratin0a_c2a0_9.6.c2a0_c2a0_c2a0_c2a0_c2a0_20_bacteriophage20_coat20_protein0a_0a_10.20_polysaccharidesc2a0_c2a0_c2a0_c2a0_20_0a_c2a0_10.1.20_distinction20_of20_polymorphs0a_c2a0_10.2.20_network20_structure2c_20_dynamics20_and20_gelation20_mechanism0a_0a_11.20_polypeptides20_as20_new20_materials0a_c2a0_11.1.20_liquid20_crystalline20_polypeptides0a_c2a0_11.2.20_blend20_system0a_0a_12.20_globular20_proteins0a_c2a0_12.1.20_28_almost29_20_complete20_assignment20_of20_13c20_nmr20_spectra20_of20_globular20_proteins0a_c2a0_12.2.20_3d20_structure3a_20_3f_-spectrin20_sh320_domain0a_c2a0_12.3.20_ligand-binding20_to20_globular20_protein20_0a_0a_13.20_membrane20_protein20_i3a_20_dynamic20_picturec2a0_c2a0_20_0a_c2a0_13.1.20_bacteriorhodopsin0a_c2a0_13.2.20_phoborhodopsin20_and20_its20_cognitive20_transducer20_0a_c2a0_13.3.20_diacylgycerol20_kinase0a_0a_14.20_membrane20_proteins20_ii3a_20_3d20_structurec2a0_20_0a_c2a0_14.1.20_3d20_structure20_of20_mechanically20_aligned20_membrane20_proteins0a_c2a0_14.2.20_secondary20_structure20_based20_on20_distance20_constraints0a_0a_15.20_biologically20_active20_membrane-associated20_peptides0a_c2a0_15.1.20_channel-forrming20_peptides0a_c2a0_15.2.20_antimicrobial20_peptides0a_c2a0_15.3.20_opioid20_peptides0a_c2a0_15.4.20_fusion20_peptides0a_c2a0_15.5.20_membrane20_model20_systemc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_20_0a_0a_17.20_amyloid20_and20_related20_biomolecules0a_c2a0_17.1.20_amyloid20_3f_-peptide0a_c2a0_17.2.20_calcitonin20_28_ct29_0a_0a_ 103="" hz="" _c2a0_="" part="" _iic2a0_="" applications="" 8.="" hydrogen="" bonded="" systems="" _c2a0_8.1.="" bond="" shifts="" _c2a0_8.2.="" 2h="" quadrupolar="" coupling="" _constantc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_="" 9.="" fibrous="" _proteinsc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_="" _c2a0_9.1.="" collagen="" _fibrilsc2a0_="" _c2a0_9.2.="" elastin="" _c2a0_9.3.="" cerial="" proteins="" _c2a0_9.4.="" silk="" fibroin="" _c2a0_9.5.="" keratin="" _c2a0_9.6.c2a0_c2a0_c2a0_c2a0_c2a0_="" bacteriophage="" coat="" protein="" 10.="" _polysaccharidesc2a0_c2a0_c2a0_c2a0_="" _c2a0_10.1.="" distinction="" of="" polymorphs="" _c2a0_10.2.="" network="" _structure2c_="" dynamics="" and="" gelation="" mechanism="" 11.="" polypeptides="" as="" new="" materials="" _c2a0_11.1.="" liquid="" crystalline="" _c2a0_11.2.="" blend="" system="" 12.="" globular="" _c2a0_12.1.="" _28_almost29_="" complete="" assignment="" 13c="" nmr="" spectra="" _c2a0_12.2.="" 3d="" _structure3a_="" spectrin="" sh3="" domain="" _c2a0_12.3.="" ligand-binding="" to="" 13.="" membrane="" _i3a_="" dynamic="" _picturec2a0_c2a0_="" _c2a0_13.1.="" bacteriorhodopsin="" _c2a0_13.2.="" phoborhodopsin="" its="" cognitive="" transducer="" _c2a0_13.3.="" diacylgycerol="" kinase="" 14.="" _ii3a_="" _structurec2a0_="" _c2a0_14.1.="" structure="" mechanically="" aligned="" _c2a0_14.2.="" secondary="" based="" on="" distance="" constraints="" 15.="" biologically="" active="" membrane-associated="" peptides="" _c2a0_15.1.="" channel-forrming="" _c2a0_15.2.="" antimicrobial="" _c2a0_15.3.="" opioid="" _c2a0_15.4.="" fusion="" _c2a0_15.5.="" model="" _systemc2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_c2a0_="" 17.="" amyloid="" related="" biomolecules="" _c2a0_17.1.="" peptide="" _c2a0_17.2.="" calcitonin="" _28_ct29_="">

Editorial Reviews

From the reviews:"This book surveys much of the current research in the area of biological solid-state NMR spectroscopy, and as such should be of great interest to the chemical, biochemical, and biophysical communities. The level is appropriate for graduate students, and the book would be an excellent textbook for a graduate level course in biological solid-state NMR spectroscopy. Its publication is timely considering the recent numerous developments in this area . ." (Michele Auger, Journal of the American Chemical Society, Vol. 129 (10), 2007)