Stochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration Approach by Michael DemuthStochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration Approach by Michael Demuth

Stochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration Approach

byMichael Demuth, Jan A. van Casteren

Paperback | October 23, 2012

Pricing and Purchase Info

$229.26 online 
$275.95 list price save 16%
Earn 1,146 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

A beautiful interplay between probability theory (Markov processes, martingale theory) on the one hand and operator and spectral theory on the other yields a uniform treatment of several kinds of Hamiltonians such as the Laplace operator, relativistic Hamiltonian, Laplace-Beltrami operator, and generators of Ornstein-Uhlenbeck processes. For such operators regular and singular perturbations of order zero and their spectral properties are investigated.
A complete treatment of the Feynman-Kac formula is given. The theory is applied to such topics as compactness or trace class properties of differences of Feynman-Kac semigroups, preservation of absolutely continuous and/or essential spectra and completeness of scattering systems.
The unified approach provides a new viewpoint of and a deeper insight into the subject. The book is aimed at advanced students and researchers in mathematical physics and mathematics with an interest in quantum physics, scattering theory, heat equation, operator theory, probability theory and spectral theory.

Title:Stochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration ApproachFormat:PaperbackDimensions:463 pages, 23.5 × 15.5 × 0.02 inPublished:October 23, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034895771

ISBN - 13:9783034895774

Reviews

Table of Contents

1 Basic Assumptions of Stochastic Spectral Analysis:Free Feller Operators.- A Introduction.- B Assumptions and Free Feller Generators.- C Examples.- D Heat kernels.- E Summary of Schrödinger semigroup theory.- E.1 Gaussian processes.- E.2 Brownian motion and related processes.- E.3 Kato-Feller potentials for the Laplace operator.- E.4 Schrödinger semigroups.- E.5 Generalizations and modifications.- 2 Perturbations of Free Feller Operators.- The framework of stochastic spectral analysis.- A Regular perturbations.- B Integral kernels, martingales, pinned measures.- C Singular perturbations.- 3 Proof of Continuity and Symmetry of Feynman-Kac Kernels.- 4 Resolvent and Semigroup Differences for Feller Operators: Operator Norms.- A Regular perturbations.- B Singular perturbations.- 5 Hilbert-Schmidt Properties of Resolvent and Semigroup Differences.- A Regular perturbations.- B Singular perturbations.- 6 Trace Class Properties of Semigroup Differences.- A General trace class criteria.- B Regular perturbations.- C Singular perturbations.- 7 Convergence of Resolvent Differences.- 8 Spectral Properties of Self-adjoint Feller Operators.- A Qualitative spectral results.- B Quantitative estimates for regular potentials.- C Quantitative estimates for singular potentials in terms of the weighted Laplace transform of the occupation time (for large coupling parameters).- C.1 Estimates for the Laplace transform of the occupation time for Wiener processes.- C.2 Quantitative large coupling estimates for Feller operators in terms of the weighted Laplace transform of the occupation time.- Appendix A Spectral Theory.- Appendix B Semigroup Theory.- Appendix C Markov Processes, Martingales and Stopping Times.- Appendix D Dirichlet Kernels, Harmonic Measures, Capacities.- Appendix E Dini's Lemma, Scheffé's Theorem, Monotone Class Theorem.- References.- Index of Symbols.