Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty by Shi-Yu HuangStochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty by Shi-Yu Huang

Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty

EditorShi-Yu Huang, Jaques Teghem

Paperback | September 28, 2011

Pricing and Purchase Info

$429.17 online 
$454.95 list price save 5%
Earn 2,146 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.
Title:Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under UncertaintyFormat:PaperbackPublished:September 28, 2011Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401074496

ISBN - 13:9789401074490


Table of Contents

I. The General Framework.- 1. Multiobjective programming under uncertainty : scope and goals of the book.- 2. Multiobjective programming : basic concepts and approaches.- 3. Stochastic programming : numerical solution techniques by semi-stochastic approximation methods.- 4. Fuzzy programming : a survey of recent developments.- II. The Stochastic Approach.- 1. Overview of different approaches for solving stochastic programming problems with multiple objective functions.- 2. "STRANGE" : an interactive method for multiobjective stochastic linear programming, and "STRANGE-MOMIX" : its extension to integer variables.- 3. Application of STRANGE to energy studies.- 4. Multiobjective stochastic linear programming with incomplete information : a general methodology.- 5. Computation of efficient solutions of stochastic optimization problems with applications to regression and scenario analysis.- III. The Fuzzy Approach.- 1. Interactive decision-making for multiobjective programming problems with fuzzy parameters.- 2. A possibilistic approach for multiobjective programming problems. Efficiency of solutions.- 3. "FLIP" : an interactive method for multiobjective linear programming with fuzzy coefficients.- 4. Application of "FLIP" method to farm structure optimization under uncertainty.- 5. "FULPAL" : an interactive method for solving (multiobjective) fuzzy linear programming problems.- 6. Multiple objective linear programming problems in the presence of fuzzy coefficients.- 7. Inequality constraints between fuzzy numbers and their use in mathematical programming.- 8. Using fuzzy logic with linguistic quantifiers in multiobjective decision making and optimization: A step towards more human-consistent models.- IV. Stochastic Versus Fuzzy Approaches and Related Issues.- 1. Stochastic versus possibilistic multiobjective programming.- 2. A comparison study of "STRANGE" and "FLIP".- 3. Multiobjective mathematical programming with inexact data.