Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom by Grigore GoguStructural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom by Grigore Gogu

Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three…

byGrigore Gogu

Paperback | October 28, 2010

not yet rated|write a review

Pricing and Purchase Info

$219.95

Earn 1100 plum® points

In stock online

Ships free on orders over $25

Not available in stores

about

This book represents the second part of a larger work dedicated to the structural synthesis of parallel robots.The originality of this work resides in the fact that it combines new formulae for mobility connectivity, redundancy and overconstraint, and the evolutionary morphology in a unified approach of structural synthesis giving interesting innovative solutions for parallel robotic manipulators. This is the first book of robotics presenting solutions of coupled, decoupled, uncoupled, fully-isotropic and maximally regular translational parallel robotic manipulators systematically generated by using the structural synthesis approach proposed in Part 1. Non-redundant/redundant, overconstrained/isostatic solutions with simple/complex limbs actuated by linear/rotary actuators with/without idle mobilities are proposed. Many solutions are presented here for the first time in the literature.The author had to make a difficult and challenging choice between protecting these solutions through patents, and releasing them directly into the public domain. The second option was adopted by publishing them in various recent scientific publications and mainly in this book. In this way, the author hopes to contribute to a rapid and widespread implementation of these solutions in future industrial products.

Details & Specs

Title:Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three…Format:PaperbackDimensions:780 pages, 9.25 × 6.1 × 0 inPublished:October 28, 2010Publisher:Springer NetherlandsLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048182026

ISBN - 13:9789048182022

Look for similar items by category:

Customer Reviews of Structural Synthesis of Parallel Robots: Part 2: Translational Topologies with Two and Three Degrees of Freedom

Reviews

Extra Content

Table of Contents

Preface; 1. Translational parallel robots with two degrees of freedom T2-type;1.1. Translational parallel robots T2-type with coupled motions ;1.2. Translational parallel robots T2-type with decoupled motions; 1.3. Translational parallel robots T2-type with uncoupled motions; 1.4. Maximally regular translational parallel robots T2-type; 2. Parallel robots with screw motion T1R1-type; 2.1. Parallel robots with screw motions and coupled motions; 2.2. Parallel robots with screw motions and decoupled motions ;2.3. Parallel robots with screw motions and uncoupled motions; 2.4. Maximally regular parallel robots with screw motion; 3. Other parallel robots with two degrees of freedom T1R1-type; 3.1. Parallel robots T 1R1 -type with coupled motions; 3.2. Parallel robots T1R1-type with decoupled motions; 3.3. Parallel robots T1R1-type with uncoupled motions; 3.4. Maximally regular parallel robots T1R1-type; 4. Spherical parallel wrists with two degrees of freedom R2-type; 4.1. Parallel wrists R2-type with coupled motions; 4.2. Parallel wrists R2-type with decoupled motions; 4.3. Parallel wrists R2-type with uncoupled motions; 4.4. Maximally regular parallel wrists R2-type; 5. Translational parallel robots with three degrees of freedom; 5.1. Translational parallel robots T3-type with coupled motions; 5.2. Translational parallel robots T3-type with decoupled motions; 5.3. Translational parallel robots T3-type with uncoupled motions; 5.4. Maximally regular translational parallel robots T3-type; 6. Parallel robots with planar motion T2R 1-type; 6.1. Parallel robots with planar coupled motions; 6.2. Parallel robots with planar decoupled motions; 6.3. Parallel robots with planar uncoupled motions; 6.4. Maximally regular planar parallel robots; 7. Other parallel robots with three degrees of freedom T2R 1-type; 7.1. Parallel robots T2R1-type with coupled motions; 7.2. Parallel robots T2R1-type with decoupled motions; 7.3. Parallel robots T2R1-type with uncoupled motions; 7.4. Maximally regular parallel robots T2R 1-type; 8. Parallel robots with three degrees of freedom T1R2-type; 8.1. Parallel robots T1R2-type with coupled motions; 8.2. Parallel robots T1R2-type with decoupled motions; 8.3. Parallel robots T1R2-type with uncoupled motions; 8.4. Maximally regular parallel robots T1R2-type; 9. Spherical parallel wrists with three degrees of freedom R3-type; 9.1. Parallel wrists R3-type with coupled motions; 9.2. Parallel wrists R3-type with decoupled motions; 9.3. Parallel wrists R3-type with uncoupled motions; 9.4. Maximally regular parallel wrists R3-type; 10. Parallel robots with Schönflies motion T3R 1-type; 10.1. Parallel robots with coupled Schönflies motions; 10.2. Parallel robots with Schönflies decoupled motions; 10.3. Parallel robots with Schönflies uncoupled motions; 10.4. Maximally regular parallel robots with Schönflies motion; 11. Other parallel robots with four degrees of freedom T3R1 -type; 11.1. Parallel robots T3R1 -type with coupled motions; 11.2. Parallel robots T3R1-type with decoupled motions; 11.3. Parallel robots T3R1-type with uncoupled motions; 11.4. Maximally regular parallel robots T3R1-type; 12. Parallel robots with four degrees of freedom T2R2-type; 12.1. Parallel robots T2R2-type with coupled motions; 12.2. Parallel robots T2R2-type with decoupled motions; 12.3. Parallel robots T2R2-type with uncoupled motions; 12.4. Maximally regular parallel robots T2R2-type; 13. Parallel robots with four degrees of freedom T1R3-type; 13. 1. Parallel robots T1R3-type with coupled motions; 13.2. Parallel robots T1R3-type with decoupled motions; 13.3. Parallel robots T1R3-type with uncoupled motions; 13.4. Maximally regular parallel robots T1R3-type; 14. Parallel robots with five degrees of freedom T3R2-type; 14.1. Parallel robots T3R2-type with coupled motions; 14.2. Parallel robots T3R2-type with decoupled motions; 14.3. Parallel robots T3R2-type with uncoupled motions; 14.4. Maximally regular parallel robots T3R2-type; 15. Parallel robots with five degrees of freedom T2R3-type; 14. 1 . Parallel robots T2R3-type with coupled motions; 14.2. Parallel robots T2R3-type with decoupled motions; 14.3. Parallel robots T2R3-type with uncoupled motions; 14.4. Maximally regular parallel robots T2R3-type; 16. Parallel robots with six degrees of freedom; 16. 1 . Parallel robots with six coupled motions; 16.2. Parallel robots with six decoupled motions; 16.3. Parallel robots with six uncoupled motions; 16.4. Maximally regular parallel robots with six degrees of freedom;

Editorial Reviews

From the reviews:"Part 2 begins with a short summary of developed by the author new formulae for mobility, connectivity, redundancy, and over-constraint. . Parallel robotic manipulators can be considered a well-established . subject of many robotic research studies. . the author has made a significant contribution towards establishing innovative and interesting solutions for parallel mechanisms. . The presentation is at a level of a graduate textbook, and the book will be useful and enjoyed by serious graduate students and by scientists and engineers from academia and industry." (Franz Selig, Zentralblatt MATH, Vol. 1168, 2009)