Superlattice to Nanoelectronics by Raphael TsuSuperlattice to Nanoelectronics by Raphael Tsu

Superlattice to Nanoelectronics

byRaphael TsuEditorRaphael Tsu

Hardcover | October 22, 2010

Pricing and Purchase Info

$292.10 online 
$316.95 list price save 7%
Earn 1461 plum® points
Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Superlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons.

  • Written by one of the founders of this field
  • Delivers over 20% new material, including new research and new technological applications
  • Provides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials

Dr. R. Tsu started his professional career at the Bell Telephone Laboratories, Murray Hill, NJ, 1961, working on the theory and experiments related to electron-phonon interaction in piezoelectric solids. He became a close collaborator of Leo Esaki (Nobel Laureate in 1973) at IBM T.J. Watson Research Center where he joined in 1966, work...
Loading
Title:Superlattice to NanoelectronicsFormat:HardcoverDimensions:346 pages, 9 × 6 × 0.98 inPublished:October 22, 2010Publisher:Elsevier ScienceLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0080968139

ISBN - 13:9780080968131

Look for similar items by category:

Reviews

Table of Contents

  1. Superlattice
  2. Resonant tunneling via man-made quantum well states
  3. Optical properties and raman scattering in man-made quantum systems
  4. Dielectric function and doping of a superlattice
  5. Quantum step and activation energy
  6. Semiconductor atomic superlattice (sas)
  7. Si quantum dots
  8. Capacitance, dielectric constant and doping quantum dots
  9. Porous silicon
  10. Some novel devices
  11. Quantum impedance of electrons
  12. Why super and why nano

Editorial Reviews

"Tsu follows the development of superlattices and quantum wells from their inception in 1969. He expects readers to have working knowledge in basic mathematics such as complex variables and partial differential equations; some skill in computer programming; and intermediate to advance courses in electromagnetics, quantum mechanics, and solid-state and semiconductor physics. Starting with superlattices, he progresses through resonant tunneling with artificial quantum well states; optical properties and Raman scattering in artificial quantum systems; dielectric function and doping of a superlattice; quantum step and activation energy; semiconductor atomic superlattices; silicon quantum dots; capacitance, dielectric constant, and doping quantum dots; porous silicon; some novel devices; the quantum impedance of a electrons; and why super and why nano."--Reference and Research Book News "This book is an update of a volume by the same name first published in 2005. It does form one of the most definitive descriptions of the physics underlying these new materials. It is also more than that, because it gives readers a lot of fresh insight to the behaviour of electrons in crystalline solids. Much of this book is ideal for assisting lecturers and tutors in putting across some of the more difficult concepts to advanced students. Overall some of the new additions make fascinating reading because Tsu relates to the reader in a very personal style.."--Contemporary Physics