Synaptic Plasticity and Transsynaptic Signaling by Patric K. StantonSynaptic Plasticity and Transsynaptic Signaling by Patric K. Stanton

Synaptic Plasticity and Transsynaptic Signaling

byPatric K. Stanton

Paperback | October 29, 2010

Pricing and Purchase Info

$270.96 online 
$303.95 list price save 10%
Earn 1,355 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Brain functions are realized by the activity of neuronal networks composed of a huge number of neurons. The efficiency of information transfer within the networks is changeable. Even the networks themselves can change through experience. Information transfer between neurons is performed at the synapse (the site of the neurons' contact) by release of neurotransmitters from the pre-synaptic cell and capture of neurotransmitters by the post-synaptic cell. The amount of released neurotransmitter or the efficacy of capture can change. Moreover, synapses are found to be newly formed upon activity or abandoned upon inactivity. These changes are called "synaptic plasticity".

This text focuses on one component of synaptic plasticity called transsynaptic signaling, or communication of synapses during their formation.

Title:Synaptic Plasticity and Transsynaptic SignalingFormat:PaperbackDimensions:557 pages, 24.8 × 16.5 × 0.01 inPublished:October 29, 2010Publisher:Springer NatureLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:1441936807

ISBN - 13:9781441936806


Table of Contents

-The three faces of norepinephrine: plasticity at the perforant path-dentate gyrus synapse -The histaminergic system in the brain: memory and synaptic plasticity -Spike timing dependent plasticity of rat hippocampal and cortical synapses and control by muscarinic transmission -Hydrogen peroxide regulates metaplasticity in the hippocampus -Presynaptic ionotropic GABA receptors: A homeostatic feedback mechanism at axon terminals of inhibitory interneurons -Activity dependent regulation of the Cl- transporting system in neurons -The truth about mossy fiber long-term potentiation -The gluzinergic synapse: who's talking and who's listening? -BDNF as a trigger for transsynaptic consolidation in the adult brain -On the role of neurotrophins in dendritic calcium signaling: implications for hippocampal transsynaptic plasticity -Transsynaptic dialogue between excitatory and inhibitory hippocampal synapses via endocannabinoids -Talking back: endocannabinoid retrograde signaling adjusts synaptic efficacy -Synaptic vesicle recycling as a substrate for neural plasticity -Retrograde messengers in plasticity of hippocampal excitatory synaptic transmission -Hippocampal long-term depression as a declarative memory mechanism -NMDA receptors: from protein-protein interactions to transactivation -The phases of LTP: the new complexities -CREB: a cornerstone of memory consolidation -Synaptic plasticity in the central nervous system: a role for calcium-regulated adenylyl cyclases -Rapid nuclear responses to action potentials -Coordinated pre- and postsynaptic changes involved in developmental activity-dependent synapse elimination -Recent advances in the role of integrins in developmental and adult synaptic plasticity -Consolidation: a view from the synapse -Morphological plasticity of the synapse: interactions of structure and function -Role of the spine apparatus in synaptic plasticity -Amyloid-b as a biologically active peptide in CNS