The Asymptotic Behaviour of Semigroups of Linear Operators by Jan van NeervenThe Asymptotic Behaviour of Semigroups of Linear Operators by Jan van Neerven

The Asymptotic Behaviour of Semigroups of Linear Operators

byJan van Neerven

Paperback | October 1, 2011

Pricing and Purchase Info


Earn 968 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h<_o2c_20_i.20_e.20_the20_infimum20_of20_all20_we20_jr20_such20_that20_ii20_exp28_ta29_ii20_3a_3a_3a_3a_20_me20_for20_some20_constant20_m20_and20_all20_t20_23a_20_02c_20_is20_equal20_to20_the20_spectral20_bound20_s28_a29_20_3d_20_sup7b_re20_a20_3a_20_a20_e20_o22_28_a29_7d_20_of20_a.20_this20_fact20_is20_known20_as20_lyapunov27_27_s20_theorem.20_its20_importance20_resides20_in20_the20_fact20_that20_the20_solutions20_of20_the20_initial20_value20_problem20_du28_t29_20_3d_a20_28_29_20_dt20_u20_t20_2c_20_u28_o29_20_3d_20_x2c_20_are20_given20_by20_u28_t29_20_3d_20_exp28_ta29_x.20_thus2c_20_lyapunov27_27_s20_theorem20_implies20_that20_the20_expoc2ad_20_nential20_growth20_of20_the20_solutions20_of20_the20_initial20_value20_problem20_associated20_to20_a20_bounded20_operator20_a20_is20_determined20_by20_the20_location20_of20_the20_spectrum20_of20_a. i.="" e.="" the="" infimum="" of="" all="" we="" jr="" such="" that="" ii="" _exp28_ta29_ii="" _3a_3a_3a_3a_="" me="" for="" some="" constant="" m="" and="" t="" _23a_="" _02c_="" is="" equal="" to="" spectral="" bound="" _s28_a29_="sup%7bRe" a="" _3a_="" e="" _o22_28_a29_7d_="" a.="" this="" fact="" known="" as="" _lyapunov27_27_s="" theorem.="" its="" importance="" resides="" in="" solutions="" initial="" value="" problem="" _du28_t29_="A" _28_29_="" dt="" u="" _2c_="" _u28_o29_="x%2c" are="" given="" by="" _u28_t29_="exp(tA)x." _thus2c_="" theorem="" implies="" _expoc2ad_="" nential="" growth="" associated="" bounded="" operator="" determined="" location="" spectrum="">
Title:The Asymptotic Behaviour of Semigroups of Linear OperatorsFormat:PaperbackDimensions:241 pagesPublished:October 1, 2011Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034899440

ISBN - 13:9783034899444


Table of Contents

1. Spectral bound and growth bound.- 1.1. C0-semigroups and the abstract Cauchy problem.- 1.2. The spectral bound and growth bound of a semigroup.- 1.3. The Laplace transform and its complex inversion.- 1.4. Positive semigroups.- Notes.- 2. Spectral mapping theorems.- 2.1. The spectral mapping theorem for the point spectrum.- 2.2. The spectral mapping theorems of Greiner and Gearhart.- 2.3. Eventually uniformly continuous semigroups.- 2.4. Groups of non-quasianalytic growth.- 2.5. Latushkin - Montgomery-Smith theory.- Notes.- 3. Uniform exponential stability.- 3.1. The theorem of Datko and Pazy.- 3.2. The theorem of Rolewicz.- 3.3. Characterization by convolutions.- 3.4. Characterization by almost periodic functions.- 3.5. Positive semigroups on Lp-spaces.- 3.6. The essential spectrum.- Notes Ill.- 4. Boundedness of the resolvent.- 4.1. The convexity theorem of Weis and Wrobel.- 4.2. Stability and boundedness of the resolvent.- 4.3. Individual stability in B-convex Banach spaces.- 4.4. Individual stability in spaces with the analytic RNP.- 4.5. Individual stability in arbitrary Banach spaces.- 4.6. Scalarly integrable semigroups.- Notes.- 5. Countability of the unitary spectrum.- 5.1. The stability theorem of Arendt, Batty, Lyubich, and V?.- 5.2. The Katznelson-Tzafriri theorem.- 5.3. The unbounded case.- 5.4. Sets of spectral synthesis.- 5.5. A quantitative stability theorem.- 5.6. A Tauberian theorem for the Laplace transform.- 5.7. The splitting theorem of Glicksberg and DeLeeuw.- Notes.- Append.- Al. Fractional powers.- A2. Interpolation theory.- A3. Banach lattices.- A4. Banach function spaces.- References.- Symbols.