The Design of Approximation Algorithms by David P. WilliamsonThe Design of Approximation Algorithms by David P. Williamson

The Design of Approximation Algorithms

byDavid P. Williamson, David B. Shmoys

Hardcover | April 26, 2011

Pricing and Purchase Info

$73.93

Earn 370 plum® points
Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Title:The Design of Approximation AlgorithmsFormat:HardcoverDimensions:516 pages, 9.96 × 8.46 × 1.26 inPublished:April 26, 2011Publisher:Cambridge University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0521195276

ISBN - 13:9780521195270

Reviews

Table of Contents

Part I. An Introduction to the Techniques: 1. An introduction to approximation algorithms; 2. Greedy algorithms and local search; 3. Rounding data and dynamic programming; 4. Deterministic rounding of linear programs; 5. Random sampling and randomized rounding of linear programs; 6. Randomized rounding of semidefinite programs; 7. The primal-dual method; 8. Cuts and metrics; Part II. Further Uses of the Techniques: 9. Further uses of greedy and local search algorithms; 10. Further uses of rounding data and dynamic programming; 11. Further uses of deterministic rounding of linear programs; 12. Further uses of random sampling and randomized rounding of linear programs; 13. Further uses of randomized rounding of semidefinite programs; 14. Further uses of the primal-dual method; 15. Further uses of cuts and metrics; 16. Techniques in proving the hardness of approximation; 17. Open problems; Appendix A. Linear programming; Appendix B. NP-completeness.

Editorial Reviews

"This book is very well written. It could serve as a textbook on the design of approximation algorithms for discrete optimization problems. Readers will enjoy the clear and precise explanation of modern concepts, and the results obtained in this very elegant theory. Solving the exercises will benefit all readers interested in gaining a deeper understanding of the methods and results in the approximate algorithms for discrete optimization area." Alexander Kreinin, Computing Reviews