The Localization Problem in Index Theory of Elliptic Operators by Vladimir NazaikinskiiThe Localization Problem in Index Theory of Elliptic Operators by Vladimir Nazaikinskii

The Localization Problem in Index Theory of Elliptic Operators

byVladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin

Paperback | December 11, 2013

Pricing and Purchase Info


Earn 518 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.
Title:The Localization Problem in Index Theory of Elliptic OperatorsFormat:PaperbackDimensions:117 pagesPublished:December 11, 2013Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3034805098

ISBN - 13:9783034805094


Table of Contents

Preface.- Introduction.- 0.1 Basics of Elliptic Theory.- 0.2 Surgery and the Superposition Principle.- 0.3 Examples and Applications.- 0.4 Bibliographical Remarks.- Part I: Superposition Principle.- 1 Superposition Principle for the Relative Index.- 1.1 Collar Spaces.- 1.2 Proper Operators and Fredholm Operators.- 1.3 Superposition Principle.- 2 Superposition Principle for K-Homology.- 2.1 Preliminaries.- 2.2 Fredholm Modules and K-Homology.- 2.3 Superposition Principle.- 2.4 Fredholm Modules and Elliptic Operators.- 3 Superposition Principle for KK-Theory.- 3.1 Preliminaries.- 3.2 Hilbert Modules, Kasparov Modules, and KK.- 3.3 Superposition Principle.- Part II: Examples.- 4 Elliptic Operators on Noncompact Manifolds.- 4.1 Gromov-Lawson Theorem.- 4.2 Bunke Theorem.- 4.3 Roe's Relative Index Construction.- 5 Applications to Boundary Value Problems.- 5.1 Preliminaries.- 5.2 Agranovich-Dynin Theorem.- 5.3 Agranovich Theorem.- 5.4 Bojarski Theorem and Its Generalizations.- 5.5 Boundary Value Problems with Symmetric Conormal Symbol.- 6 Spectral Flow for Families of Dirac Type Operators.- 6.1 Statement of the Problem.- 6.2 Simple Example.- 6.3 Formula for the Spectral Flow.- 6.4 Computation of the Spectral Flow for a Graphene Sheet.- Bibliography.