The Mellin Transformation and Fuchsian Type Partial Differential Equations by Zofia SzmydtThe Mellin Transformation and Fuchsian Type Partial Differential Equations by Zofia Szmydt

The Mellin Transformation and Fuchsian Type Partial Differential Equations

byZofia Szmydt, B. Ziemian

Paperback | October 26, 2012

Pricing and Purchase Info

$142.20 online 
$150.50 list price save 5%
Earn 711 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

'Et moi, .. Of si j'avail su comment en revenir. je One selVice mathematics has rendered the n'y semis point alll!.' human race. It has put common sense back Jules Verne when: it belongs, on the topmon shelf next to the dusty canister labelled 'discarded nonsense'. The series is divergent; therefore we may be Eric T. Bell able to do something with iL O. Heaviside Mathematics is a tool for thought A highly necessary tool in a world where both feedback and nonlineari­ ties abound, Similarly. all kinds of parts of mathematics serve as tools for other parts and for other sci­ ences, Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser­ vice topology has rendered mathematical physics .. , '; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Title:The Mellin Transformation and Fuchsian Type Partial Differential EquationsFormat:PaperbackDimensions:222 pagesPublished:October 26, 2012Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9401050694

ISBN - 13:9789401050692

Reviews

Table of Contents

I. Introduction.- §1. Terminology and notation.- §2. Elementary facts on complex topological vector spaces.- 1. Multinormed complex vector spaces and their duals.- 2. Inductive and projective limits.- 3. Subspaces. The Hahn-Banach theorem.- Exercise.- §3. A review of basic facts in the theory of distributions.- 1. Spaces DK and (DK)1.- 2. Spaces D(A) and D'(A).- 3. Spaces S and S1.- 4. Spaces E and E1.- 5. Substitution in distributions. Homogeneous distributions.- 6. Classical order of a distribution and extendibility theorems for distributions.- 7. Convolution of distributions.- 8. Tensor product of distributions.- Exercises.- II. Mellin distributions and the Mellin transformation.- §4. The Fourier and the Fourier-Mellin transformations.- 1. The Fourier transformation in S1.- 2. The Fourier-Mellin transformation in the space of Mellin distributions with support in % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb % qegWuDJLgzHbIrHHhaiuqacqWFsbGufaqabeGabaaabaqcLbqacGao % 4pOBaaGcbaqcLbqacWaGaI7-q8VHRaWkaaaaaa!450D!$$ R\begin{array}{*{20}{c}} n \\ + \end{array} $$.- Exercises.- §5. The spaces of Mellin distributions with support in a polyinterval.- 1. Spaces Ma, ((0, t]) and M1a ((0, t]).- 2. Spaces M(?) ((0, t]) and M1(?) ((0, t]).- Exercises.- §6. Operations of multiplication and differentiation in the space of Mellin distributions.- 1. Multiplication and differentiation in Ma, M(?) and their duals.- 2. Mellin multipliers.- Exercises.- §7. The Mellin transformation in the space of Mellin distributions.- 1. The Mellin transformation in the space of Mellin distributions and its relations with the Fourier-Laplace transformation.- 2. Examples of Mellin transforms of some functions.- 3. Mellin transforms of certain cut-off functions.- 3.1. One-dimensional smooth cut-off functions.- 3.2. n-Dimensional smooth cut-off functions with a parameter.- Exercises.- §8. The structure of Mellin distributions.- 1. Characterizations of Mellin distributions.- 2. Substitution in a Mellin distribution.- 3. Mellin order of a Mellin distribution.- Exercises.- §9. Paley-Wiener type theorems for the Mellin transformation.- Exercises.- §10. Mellin transforms of cut-off functions (continued).- 1. Conical cut-off functions.- 2. The K-inequalities.- 3. The "tangent cones" ?K and related cut-off functions.- 4. Further investigation of the Mellin transform of a conical cut-off function.- Exercises.- §11. Important subspaces of Mellin distributions.- 1. Subspaces % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI % cacaWG4bWaaSaaaeaacaWGKbaabaGaamizaiaadIhaaaGaaiykaiaa % dwhacqGH9aqpcaWGMbaaaa!3EE9!$$ P(x\frac{d}{{dx}})u = f $$.- 2. Subspaces SPr(s,s1 ) of Mellin distributions.- 3. Spaces M(? ?) and Zd(? ?) of distributions with continuous radial asymptotics.- Exercises.- §12. The modified Cauchy transformation.- 1. Modified Cauchy and Hilbert transformations in dimension 1.- 2. The case with parameters.- Exercises.- III. Fuchsian type singular operators.- §13. Fuchsian type ordinary differential operators.- 1. Asymptotic expansions.- 2. The equation % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamXvP5 % wqonvsaeHbmv3yPrwyGmvyUnhaiuGajugOaiadaciaaW3--Leajjad % acigaa3--nhaZPWaiaiG47p6-VbaaSqaiaiG47p6-ladaciC-d9--H % caOeXafv3ySLgzGmvETj2BSbacgmGamaiGW9p0-7xYdCNamaiGW9p0 % --xkaKcabKaGaIV-O-paaaa!6A3A!$$ MI{s_{(\omega )}} $$ and definition of ordinary Fuchsian type differential operators.- 3. Case of smooth coefficients.- 4. Case of analytic coefficients.- 5. Special functions as generalized analytic functions.- Exercises.- §14. Elliptic Fuchsian type partial differential equations in spaces % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI % cacaWG4bWaaSaaaeaacaWGKbaabaGaamizaiaadIhaaaGaaiykaiaa % dwhacqGH9aqpcaWGMbaaaa!3EE9!$$ P(x\frac{d}{{dx}})u = f $$.- 1. Existence and regularity of solutions on tangent cones ?K.- 2. Case of a proper cone.- Exercise.- §15. Fuchsian type partial differential equations in spaces with continuous radial asymptotics.- 1. The radial characteristic set Charg % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGamaiJeg7aHj % acacie-d9-cQcacGaGasW-maWGqbaaaa!4027!$$ alpha *P $$.- 2. Regularity of solutions in spaces M(? ?) and Zd(? ?).- Appendix. Generalized smooth functions and theory of resurgent functions of Jean Ecalle.- 1. Introduction.- 2. Generalized Taylor expansions.- 3. Algebra of resurgent functions of Jean Ecalle.- 4. Applications.- List of Symbols.