Thermoacoustics: A Unifying Perspective For Some Engines And Refrigerators by Gregory W. SwiftThermoacoustics: A Unifying Perspective For Some Engines And Refrigerators by Gregory W. Swift

Thermoacoustics: A Unifying Perspective For Some Engines And Refrigerators

byGregory W. Swift

Hardcover | October 18, 2017

Pricing and Purchase Info

$115.43 online 
$137.95 list price save 16%
Earn 577 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This updated new edition provides an introduction to the field of thermoacoustics. All of the key aspects of the topic are introduced, with the goal of helping the reader to acquire both an intuitive understanding and the ability to design hardware, build it, and assess its performance. Weaving together intuition, mathematics, and experimental results, this text equips readers with the tools to bridge the fields of thermodynamics and acoustics. At the same time, it remains firmly grounded in experimental results, basing its discussions on the distillation of a body of experiments spanning several decades and countries.

The book begins with detailed treatment of the fundamental physical laws that underlie thermoacoustics. It then goes on to discuss key concepts, including simple oscillations, waves, power, and efficiency. The remaining portions of the book delve into more advanced topics and address practical concerns in applications  chapters on hardware and

measurements. With its careful progression and end-of-chapter exercises, this book will appeal to graduate students in physics and engineering as well as researchers and practitioners in either acoustics or thermodynamics looking to explore the possibilities of thermoacoustics. This revised and expanded second edition has been updated with an eye to modern technology, including computer animations and DeltaEC examples.

Greg Swift received his PhD in physics at the University of California at Berkeley in 1980, and has worked in the Condensed Matter and Thermal Physics Group at Los Alamos National Laboratory (LANL) ever since.  He is a Fellow of the Acoustical Society of America, of the American Physical Society, and of LANL.  He received the Acoustica...
Loading
Title:Thermoacoustics: A Unifying Perspective For Some Engines And RefrigeratorsFormat:HardcoverDimensions:326 pages, 23.5 × 15.5 × 0.25 inPublished:October 18, 2017Publisher:Springer NatureLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:331966932X

ISBN - 13:9783319669328

Reviews

Table of Contents

Preface v
List of symbols viii
1 Introduction 1
1.1 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Overview and examples . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Standing-wave heat engine . . . . . . . . . . . . . . . 9
1.3.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . 14
1.3.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . 17
1.3.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . 22
1.4 Thermoacoustics and conventional technology . . . . . . . . . 25
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Background 30
2.1 Laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 The first la
w . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 The second law . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Laws of fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Continuity (mass) . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Ideal gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Thermodynamic properties . . . . . . . . . . . . . . . 44
2.3.2 Transport properties . . . . . . . . . . . . . . . . . . . 47
2.3.3 Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.4 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Some consequences of the laws . . . . . . . . . . . . . . . . .
48
2.4.1 Carnot's eficiency . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Maxwell relations . . . . . . . . . . . . . . . . . . . . . 49
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Simple oscillations 55
3.1 The harmonic oscillator and complex notation . . . . . . . . . 55
3.2 Acoustic approximations to the laws of gases . . . . . . . . . 59
3.3 Some simple oscillations in gases . . . . . . . . . . . . . . . . 64
3.3.1 The gas spring . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Simple sound waves . . . . . . . . . . . . . . . . . . . 66
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Waves 72
4.1 Lossless acoustics and ideal resonators . . . . . . . . . . . . . 72
4.2 Viscous and thermal effects in large channels . . . . . . . . . 79
4.2.1 Viscous resistance . . . . . .
. . . . . . . . . . . . . . 80
4.2.2 Thermal-relaxation conductance . . . . . . . . . . . . 85
4.3 Inviscid boundary-layer thermoacoustics . . . . . . . . . . . . 89
4.4 General thermoacoustics . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 The math . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 The ideas . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5 Power 112
5.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.1 Acoustic power dissipation with dTm/dx = 0 . . . . . 116
5.1.2 Acoustic power with zero viscosity . . . . . . . . . . . 119
5.2 Total power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Traveling waves . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Standing waves . . . . . . . . . . . . . .
. . . . . . . . 132
5.3 Some calculation methods . . . . . . . . . . . . . . . . . . . . 133
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Efficiency . . . 144
6.1 Lost work and entropy generation . . . . . . . . . . . . . . . . 145
6.2 Exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7 Beyond Rott's thermoacoustics 164
7.1 Tortuous porous media . . . . . . . . . . . . . . . . . . . . . . 167
7.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.1 Minor losses . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Entrance effects and joining conditions .
. . . . . . . . . . . . 182
7.3.1 Entrance effects . . . . . . . . . . . . . . . . . . . . . . 182
7.3.2 Joining conditions . . . . . . . . . . . . . . . . . . . . 183
7.4 Mass streaming . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4.1 Gedeon streaming ("dc flow") . . . . . . . . . . . . . . 193
7.4.2 Rayleigh streaming . . . . . . . . . . . . . . . . . . . . 197
7.4.3 Jet-driven streaming . . . . . . . . . . . . . . . . . . . 202
7.4.4 Streaming within a regenerator or stack . . . . . . . . 204
7.4.5 Deliberate streaming . . . . . . . . . . . . . . . . . . . 205
7.5 Harmonics and shocks . . . . . . . . . . . . . . . . . . . . . . 212
7.6 Dimensionless groups . . . . . . . . . . . . . . . . . . . . . . . 216
7.6.1 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.6.2 Empirical correlation . . . . . . . . . . . . . . . . . . . 218
7.6.3 Scale models . . . . . . . . . . . . . . . . . . . . . . . 219
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8 Hardware . . . . . 223
8.1 Prelude: the gas itself . . . . . . . . . . . . . . . . . . . . . . 223
8.2 Stacks and regenerators . . . . . . . . . . . . . . . . . . . . . 224
8.2.1 Standing wave . . . . . . . . . . . . . . . . . . . . . . 225
8.2.2 Traveling wave . . . . . . . . . . . . . . . . . . . . . . 231
8.3 Heat exchangers . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3.1 Common arrangements . . . . . . . . . . . . . . . . . 233
8.3.2 Thermoacoustic choices . . . . . . . . . . . . . . . . . 234
8.4 Thermal buffer tubes, pulse tubes, and flow straighteners . . 238
8.5 Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.1 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 239
8.5.2 Size, weight, and pressure-vessel safety . . . . . . . . . 241
8.5.3 Harmonic suppression . . . . . . . . . . . . . . . . . . 242
8.6 Electroacoustic power transducers . . . . . . . . . . . . . . . 243
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9 Measurements . . . 252
9.1 Easy measurements . . . . . . . . . . . . . . . . . . . . . . . . 252
9.1.1 Pressures and frequency . . . . . . . . . . . . . . . . . 253
9.1.2 Mean temperature . . . . . . . . . . . . . . . . . . . . 255
9.2 Power measurements . . . . . . . . . . . . . . . . . . . . . . . 256
9.2.1 Acoustic power . . . . . . . . . . . . . . . . . . . . . . 256
9.2.2 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.3 Difficult measurements . . . . . . . . . . . . . . . . . . . . . . 262
9.4 Points of view . . . . . . . . . . . . . . . . . . . . . . .
. . . . 263
9.4.1 Natural dependence . . . . . . . . . . . . . . . . . . . 264
9.4.2 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . 268
9.4.4 A thermoacoustic perspective . . . . . . . . . . . . . . 271
9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
A Common pitfalls 285
B DeltaEC files . . . 287
B.1 Standing-wave engine . . . . . . . . . . . . . . . . . . . . . . 287
B.2 Standing-wave refrigerator . . . . . . . . . . . . . . . . . . . . 290
B.3 Orifice pulse-tube refrigerator . . . . . . . . . . . . . . . . . . 292
B.4 Thermoacoustic-Stirling heat engine . . . . . . . . . . . . . . 295
Bibliography . . . 302
Author index . . . 313
Subject index . . . 316

Editorial Reviews

"This work approaches acoustics in general very differently than other texts. . We are big fans of this book. It is much more than a treatise on how to make acoustical refrigerators and heat engines. It presents another way to approach the fundamentals of acoustics." (Robert M. Keolian, Steven L. Garrett, Journal of the Acoustical Society of America, Vol 143 (4), April, 2018)(Quote for the First Edition)"Swift begins a textbook that employs 21st century pedagogical tools to introduce students and researchers to a 21st century technology. . The complete and systematic exposition of thermoacoustic theory and experimental technique in this new textbook should make Swift's understanding accessible to a far wider group of scientists and engineers who can go on to exploit that understanding and produce practical devices while contributing to the extension of that understanding by bringing their expertise from outside 'acoustics' into thermoacoustics." (Steven L. Garrett, Journal of the Acoustical Society, Vol. 113, May, 2003)