Tissue Growth Factors by J. AbrahamTissue Growth Factors by J. Abraham

Tissue Growth Factors

byJ. AbrahamEditorR. Baserga

Paperback | December 13, 2011

Pricing and Purchase Info

$205.29 online 
$248.50 list price save 17%
Earn 1,026 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


From a logical point of view, cell division is regulated by the environment and by the ability of the cell to respond to the environmental signals. The terminology of the cell cycle, the elaborate mathematical models, and the kinetic analyses are all convenient notations and descriptions of the behavior of populations of cells. However, they tell us very little about the fundamental molecular mechanisms that control cell proliferation. Stated in other terms, what controls cell reproduction are growth factors in the environment and genes and gene products inside the cell or at its surface. This book examines the aforementioned growth factors, the study of which has made very rapid progress in the past few years. The selection of topics has been influenced by logistic considerations, but the book, as a whole, gives a broad survey of the state of the art of this exciting field. For this, thanks are due to the contributors, who have given much time to the preparation of the manuscripts and have met the deadline with a punctuality that is uncommon among biomedical scientists. I would also like to thank Ms. NORA PERRETT and the staff of Springer-Verlag for their help in editing the manuscripts and in preparing the production of the book.
Title:Tissue Growth FactorsFormat:PaperbackDimensions:632 pages, 24.4 × 17 × 0.01 inPublished:December 13, 2011Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:3642679889

ISBN - 13:9783642679889

Look for similar items by category:


Table of Contents

1 Introduction to Cell Growth: Growth in Size and DNA Replication.- A. Introduction.- B. Doubling of Size in Growing Cells.- C. Replication of DNA in Growing Cells.- D. Independence of Signal to Grow in Size from Signal to Replicate DNA.- E. Mechanism of Action of Growth Factors.- References.- 2 Survival and Growth Requirements of Nontransformed Cells..- A. Definitions.- I. Normal, Nontransformed, and Transformed Cells.- II. Survival and Survival Requirements.- III. Cell Cycle, Growth, Division, Multiplication, and Proliferation.- IV. Nutrient, Growth Requirement, Growth Factor, Mitogen, and Hormone.- B. Assay Systems for the Measurement of Growth Requirements.- I. Background.- II. Inadequacy for Nontransformed Cells of Classic Assay Systems.- 1. Evolutionary Adaptation of Permanent Lines.- 2. Role of Serum in the Multiplication of Nontransformed Cells.- 3. Problems Awaiting Solution for Nontransformed Cells.- III. Holistic Approach to Cellular Growth Requirements.- IV. Development of Specific Assays for Individual Growth Requirements.- 1. Background Media Lacking a Single Growth-Promoting Substance.- 2. First Limiting Factor.- 3. Replaceable Requirements.- 4. Sequential Depletion.- 5. Systematic Testing of Suspected Growth-Promoting Substances.- V. Types of Measurement and Analysis of Data.- 1. Short-Term Vs Long-Term Multiplication.- 2. Sparse Vs Dense Cultures.- 3. DNA Synthesis Vs Increase in Cell Number.- 4. Analysis of Data Based on Total Multiplication.- 5. Analysis Based on Rate of Multiplication.- 6. Multiplication Rate Kinetics.- VI. Systematic Analysis of Growth Requirements.- C. Requirements for Survival and Growth of Nontransformed Cells.- I. Transformed Vs Nontransformed Cells.- II. Requirements Related to Subculturing and Cellular Attachment.- 1. Anchorage Dependence.- 2. Neutralization of the Dispersing Agent.- 3. Low Temperature Trypsinization.- 4. Attachment and Spreading Factors.- 5. The Culture Surface.- 6. Artificial Substitutes for the Basement Membrane.- III. Inorganic Ions, Physical Chemistry, and Cell Physiology.- 1. Bicarbonate, Carbon Dioxide, pH, and Buffering.- 2. Sodium, Chloride, Osmolarity, and Humidification of Incubators.- 3. Potassium and Na+: K+ Ratios.- 4. Calcium, Magnesium, and Regulatory Roles of Divalent Cations.- 5. Phosphate.- 6. Other Physicochemical Parameters.- IV. Qualitative Nutrient Requirements.- 1. Components of Eagle's Minimum Essential Medium.- 2. Other Amino Acids.- 3. Other Vitamins.- 4. Carbohydrates and Intermediates of Energy Metabolism.- 5. Nucleic Acid Components.- 6. Other Organic Nutrients.- 7. Inorganic Trace Elements.- V. Quantitative Optimization of Synthetic Media.- 1. Species and Cell Type Individuality of Quantitative Requirements.- 2. Reduction of Requirements for Serum and Growth Factors.- VI. Lipids and Related Substances.- 1. Fatty Acids.- 2. Prostaglandins.- 3. Phospholipids.- 4. Cholesterol.- 5. Synthetic Media.- VII. Hormones, Hormone-Like Growth Factors, and Carrier Proteins.- 1. Hormones.- 2. Growth Factors.- 3. Replacement of Serum with Hormones and Growth Factors.- 4. Individuality of Cellular Requirements.- 5. Nontransformed Cells.- 6. Relationship to In Vivo Growth Requirements.- VIII. Special Requirements Related to Cellular Density.- 1. Requirements for Clonal Growth.- 2. Requirements for Multiplication of Dense Cultures.- IX. Regulatory Interactions and Artificial Stimulation of Multiplication.- 1. Borderline Toxicity.- 2. Proteolytic Enzymes.- 3. Tumor Promoters.- 4. Inorganic Ions.- 5. Cyclic Nucleotides.- 6. Defining a Genuine Growth Requirement.- D. Requirements for Survival of Nontransformed Cells Without Proliferation.- I. Early Studies.- II. Survival Factor.- III. Elimination of the Need for Survival Factor.- IV. Nutrients and Survival.- V. Differences in Survival Between Nontransformed and Transformed Cells.- E. Future Studies of the Growth and Survival Requirements of Nontransformed Cells.- I. Integration of New Findings.- II. Questions Remaining to be Solved After Development Synthetic Media.- III. Magnitude of Remaining Work.- IV. Selective Allocation of Resources.- F. Summary and Conclusions.- G. Note Added in Proof.- References.- 3 Epidermal Growth Factor.- A. Introduction.- B. Chemical and Physical properties of EGF.- I. Mouse EGF.- 1. Isolation.- 2. Chemical and Physical Properties.- 3. Derivatives.- a) EGF-2.- b) EGF-5.- c) Cyanogen Bromide EGF.- 4. High Molecular Weight Mouse EGF.- II. Human EGF.- 1. Identification and Isolation.- 2. Chemical and Physical Properties.- 3. Relationship of Human EGF and Urogastrone.- III. Rat EGF.- C. Physiological Aspects of EGF.- I. Concentration in Body Fluids.- 1. Mouse EGF.- 2. Human EGF.- II. Localization.- 1. Mouse EGF.- 2. Human EGF.- III. Control of Submaxillary Gland Content of Mouse EGF.- IV. Secretion of Mouse EGF from the Submaxillary Gland.- V. Factors Affecting Levels of Human EGF.- D. Biological Activities of EGF In Vivo.- I. Skin.- II. Corneal Epithelium.- III. Respiratory Epithelium.- IV. Gastrointestinal Tract.- V. Liver.- E. Organ Culture Studies of EGF.- I. Skin.- II. Other Tissues.- 1. Cornea.- 2. Palate.- 3. Bone.- F. Cell Culture Studies of EGF.- I. Cell Nutrition.- II. Types of Cells Affected by EGF.- III. EGF and the Growth of Cell Populations.- IV. Components of the Mitogenic Response.- 1. Rapid Biological Responses at the Membrane.- a) Uridine Uptake.- b) Sugar Transport.- c) Cation Fluxes.- d) Putrescine Transport.- e) Alanine Transport.- f) Membrane Ruffling and Macropinocytosis.- g) Other Membrane Responses.- 2. Responses of EGF Occurring in the Cytoplasm.- a) Activation of Glycolysis.- b) Synthesis of Extracellular Macromolecules.- c) Activation of RNA and Protein Synthesis.- d) Activation of Ornithine Decarboxylase.- e) Protein Phosphorylation.- 3. Stimulation of DNA Synthesis.- V. Responses Not Related to Mitogenesis.- G. Growth Factor: Receptor Interactions.- I. Receptors for EGF.- II. Internalization and Degradation of EGF.- 1. Biochemical Evidence.- 2. Morphological Evidence.- III. Internalization of the Receptor.- 1. Indirect Evidence.- 2. Chemical Evidence.- 3. Morphological Evidence.- IV. Recovery of Receptor Activity.- H. Relationship of EGF Binding and Metabolism to Biological Activity.- I. Rapid Changes in Cell Physiology.- II. Stimulation of DNA Synthesis.- I. Other Controls of Receptor Activity.- I. Transforming Agents.- II. Tumor Promoters.- III. Differentiation.- IV. Lectins and Glycoprotein Metabolism.- V. Glucocorticoids.- VI. Modulation of Protein Synthesis.- K. A Biochemical Response to EGF in Subcellular Systems.- L. Prospectus.- References.- 4 The Platelet-Derived Growth Factor.- A. Serum, the Platelet-Derived Growth Factor, and Cell Culture.- B. The Platelet.- C. Platelet-Structure and function.- D. The Gray Platelet Syndrome.- E. The Megakaryocyte as the Source of Platelet-Derived Growth Factor.- F. Purification and Characterization of the Platelet-Derived Growth Factor.- G. The Spectrum of Cell Response.- H. Control of Cell Proliferation by Platelet-Derived Growth Factor and Plasma.- I. The Role of Plasma.- K. Endocytosis and the Platelet-Derived Growth Factor.- L. Modulation of Receptors for Epidermal Growth Factor by Platelet-Derived Growth Factor.- M. Lipid Metabolism and the Platelet-Derived Growth Factor.- N. Platelets and Cell Proliferation In Vivo.- O. Summary.- References.- 5 Somatomedin: Physiological Control and Effects on Cell Proliferation.- A. Introduction.- B. Assay Systems Used to Measure Somatomedins.- I. Biological Assays.- II. Radioreceptor Assays.- III. Protein Binding Assays.- IV. Radioimmunoassays.- V. Standards Used for the Quantitation of Somatomedin Activity.- C. Isolation and Properties of the Individual Somatomedins.- I. Basic Somatomedins.- 1. Somatomedin-C (SM-C).- 2. Insulin-Like Growth Factor I (IGF-I).- 3. Somatomedin in Other Species.- II. Neutral Somatomedins.- 1. Insulin-Like Growth Factor II (IGF-II).- 2. Somatomedin-A (SM-A).- 3. Multiplication Stimulating Activity (MSA).- D. Production of the Somatomedins.- I. Somatomedin Production by Organs and Tissue Slices.- II. Somatomedin Production by Monolayer Cultures.- E. Molecular Size and Transport of Somatomedins in Plasma: The Somatomedin Binding Proteins.- F. Control of Somatomedin Concentrations in Blood.- I. Blood Concentrations in Normal Individuals.- 1. Effect of Age.- 2. Effect of Hormonal Status.- a) Growth Hormone.- b) Prolactin and Placentral Lactogens.- c) Thyroid Hormone.- d) Cortisol.- e) Estrogens.- 3. Effect of Pregnancy.- 4. Effect of Nutritional Status.- G. In Vitro Biological Effects of the Somatomedins.- I. Whole Tissue Effects.- 1. Cartilage.- 2. Muscle.- 3. Adipose Tissue.- II. Correlation Between Biological Responses and Receptor Interactions.- III. Stimulation of DNA Synthesis and Cell Growth in Tissue Culture.- 1. Range of Responsive Cell Types.- 2. Interaction Between Somatomedin and Other Growth Factors in the Cell Cycle.- 3. Production of Somatomedin-Like Peptides by Cultured Cells and Their Role in Cellular Proliferation.- H. In Vivo Actions of the Somatomedins.- References.- 6 Glucocorticoid Modulation of Cell Proliferation.- A. Introduction.- I. Historical Perspective.- II. Glucocorticoids: General Mechanisms of Action.- B. Hormone Responsiveness by Cell Cultures.- I. Various Vertebrate Species.- II. Human Cell Lines.- III. Mouse and Rat Cell Lines.- C. Permissive Effects of Glucocorticoids.- I. Glucocorticoid Modulation of Heterologous Receptors.- II. Glucocorticoid Effects on Other Factors Implicated in the Regulation of Cell Growth.- D. Glucocorticoid Induction of Growth Factors in Normal Human Cells In Vitro.- E. Summary and Conclusions.- References.- 7 Proteases as Growth Factors.- A. Introduction.- B. Stimulation of DNA Synthesis and Cell Division by Proteases.- I. Cell-Protease Combinations Which Yield Mitogenic Stimulation.- II. Involvement of Proteases in the Action of Other Growth Factors.- III. Protease Activity of Other Growth Factors.- C. Mechanisms of Protease-Stimulated Cell Proliferation.- I. Mitogenic Stimulation by Proteases Under Serum-Free Chemically Defined Conditions.- II. Requirement of Proteolytic Activity.- III. Sufficiency of Cell Surface Action.- IV. Cell Surface Receptors for Thrombin.- V. Cleavage of Cell Surface Proteins and Stimulation of Cell Division.- VI. Perspectives and Future Studies.- D. Possible Role of Protease-Stimulated Cell Proliferation in Physiological Processes.- E. Conclusions.- References.- 8 Nerve Growth Factor.- A. Discovery of NGF and Its Early History.- B. Multiple Molecular Forms of NGF.- I. Cohen's NGF.- II. 7S NGF.- III. 2.5S NGF.- IV. Snake Venom NGF.- V. What is the Naturally Occurring Form of NGF in the Mouse Salivary Gland?.- C. The NGF-Zymogen and Its Enzymic Properties.- I. Autocatalytic Self-activation.- II. Regulation of the Autoactivation Reaction.- III. Activation of Plasminogen by NGF.- D. Role of the Submandibular Gland in Secretion of NGF.- E. Secretion of NGF by Cells in Culture.- F. Biological Effects of NGF Related to the Nervous System and Neural Crest Derivatives.- I. Sympathetic and Sensory Neurons.- II. Adrenal Cells.- III. Pheochromocytoma Cells.- IV. Central Nervous System.- G. Retrograde Transport and Trophic Effects.- H. Cellular NGF Receptors.- I. Other Biological Actions of the 116000 Molecular Weight NGF.- I. Effect of Saliva and NGF on Wounds.- II. Effect of Saliva and NGF on Stress Ulcers.- K. Summary and Perspectives.- References.- 9 The Role of Cold Insoluble Globulin (Plasma Fibronectin) in Cell Adhesion In Vitro.- A. Introduction.- B. Cold Insoluble Globulin and Fibronectin: Terminology.- C. The Role of CIG in Cell Adhesion to Tissue Culture Dishes.- I. Historical Overview.- II. Identification of CIG as the Serum Factor in Cell Attachment and Spreading.- III. Analysis of CIG Adsorption to Tissue Culture Dishes.- IV. Technical Comments on CIG Purification.- V. Other Components Which Promote Cell Spreading.- D. The Role of CIG in Cell Adhesion to Surfaces Other than Tissue Culture Dishes.- I. Bacteriological Dishes.- II. CIG and the Adhesion of Cells to Collagen.- III. CIG and the Adhesion of Cells to Fibrin and Fibrinogen.- E. Cell Spreading in the Absence of Serum or CIG.- F. Mechanism of Action of CIG.- I. Ligand Receptor Hypothesis.- II. Cooperativity and CIG Binding.- III. Interaction of Multimeric CIG with BHK Cells.- IV. Inhibition of Cell Adhesion with Gangliosides.- V. Isolation of Cell-Substratum Adhesion Sites.- VI. Studies on the Active Site(s) of CIG.- G. Summary.- References.- 10 Membrane-Derived Inhibitory Factors.- A. Introduction and Perspective.- B. Some Properties of Membrane-Derived Inhibitory Factors.- C. Cell Cycle-Dependent Inhibition of DNA Synthesis and Cell Division.- D. The Role of Glycosylation in the Control of DNA Synthesis.- E. Inhibition of DNA Synthesis in Virus-Transformed Cells.- F. Surface Membranes and Nutrient Uptake.- G. Prospects and Conclusions.- References.- 11 Diffusible Factors in Tissue Cultures.- A. Introduction.- B. Metabolic Cooperation.- C. Diffusion of Stimulating Factors.- I. The Feeder Effect.- II. Multiplication-Stimulating Activity from Rat Cells.- 1. Purification of MSA.- 2. Metabolic Effects of MSA.- 3. Cell Surface Receptors.- D. Diffusion of Inhibitory Factors.- I. Problem of Density-Dependent Inhibition.- 1. Mechanism of DDI.- II. Inhibitory Factors Released by Cells.- 1. Inhibitors from 3T3 Cells.- 2. Inhibitors from WI38 Cells.- 3. Inhibitors from Chinese Hamster Fibroblasts.- 4. Inhibitors from a Melanocytic Line.- 5. Inhibitors from BSC1 Cells.- E. Diffusion of Transforming Factors.- I. Diffusion of Protein Factors Which Enhance Malignant Transformation.- II. Metabolic Interaction Which Enhances the Chemical Transformation of Cells.- F. Concluding Remarks.- References.- 12 Hemopoietic Colony Stimulating Factors.- A. Introduction and Terminology.- B. Culture of Hemopoietic Colonies in Semisolid Medium.- C. Detection and Assay of Colony-Stimulating Factors.- D. Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF).- I. Sites of Production of GM-CSF.- II. Purification and Chemical Nature of GM-CSF.- III. Mechanisms of Action of GM-CSF.- IV. Factors Modifying Responsiveness to GM-CSF.- V. Factors Influencing GM-CSF Production and Levels.- 1. Steady State Production of GM-CSF.- 2. Increased GM-CSF Production in Response to Infections and Bacterial Products.- 3. Increased GM-CSF Production Following Lymphocyte Stimulation.- 4. Other Situations Modifying GM-CSF Levels.- VI. Role of GM-CSF In Vivo.- E. Eosinophil Colony Stimulating Factor (EO-CSF).- F. Megakaryocyte Colony Stimulating Factor (MEG-CSF).- G. Erythropoietin and Erythroid Colony Stimulating Factor.- H. Final Comments.- References.- 13 Inhibition of Hematopoietic Cell Proliferation.- A. Introduction.- B. Hematopoietic Techniques and Nomenclature.- I. Pluripotent Stem Cells.- II. Unipotent (Committed) Stem Cells.- C. Inhibitors of Hematopoiesis.- I. "Physiologic" Inhibitors of Hematopoiesis.- 1. Prostaglandins.- 2. Neutrophil-Derived Colony Inhibitory Factor.- 3. Chalones.- 4. Serum Inhibitors.- II. Inhibitors of Hematopoiesis in Disease.- 1. Leukemic Inhibitors.- 2. Immune Suppression of Hematopoiesis.- a) Humoral Inhibitors.- b) Cell-Mediated Immune Suppression.- D. Summary and Conclusions.- References.- 14 Inducers and Inhibitors of Leukemic Cell Differentiation in Culture.- A. Introduction.- B. Leukemic Cell Lines Utilized for Differentiation Studies in Culture.- C. Inducers of Differentiation in Culture.- D. Mechanism of Action of Inducers of Differentiation.- E. Clonal Analysis of the Induction of Differentiation.- F. Inducers of Leukemic Cell Differentiation and the Cell Cycle.- G. Inhibitors of Differentiation.- H. Inducers of Differentiation and Treatment of Leukemias In Vivo.- References.- 15 Angiogenesis Factor(s).- A. Introduction.- B. Morphogenesis of Vascular Networks.- C. Assays for Angiogenesis.- I. Rabbit Eye.- II. Chick Embryo Chorioallantoic Membrane.- III. Hamster Cheek Pouch.- IV. Dorsal Air Sac and Intracutaneous Injections.- V. Endothelial Cell Culture.- VI. Renal Assay.- D. Induction of Angiogenesis.- I. Angiogenesis by Normal Tissues.- II. Angiogenesis by Normal Cells.- III. Angiogenesis by Neoplastic Tissues and Cells.- E. Isolation and Characterization of Angiogenesis Factor(s).- I. Fractionation of Fluids or Tissues with Angiogenic Capacity.- II. Angiogenic Capacity of Growth Factors and Prostaglandins.- F. Physiologic Significance of Angiogenesis Factor(s).- I. Angiogenesis as a Marker for Neoplastic Transformation.- II. Antiangiogenesis.- G. Concluding Remarks.- References.- 16 Growth of Human Tumors in Culture.- A. General Introduction.- I. The Ideal System.- II. Current State of Technology for Culturing Tumor Cells.- III. Identifying Cell Types in Culture.- 1. Endothelial Cells.- 2. Epithelial Cells.- 3. Fibroblastoid Cells.- IV. Identifying Tumor Vs Nonmalignant Cells in Culture.- V. Identifying Cell-to-Cell Contamination in Culture.- B. Specific Systems.- I. Carcinomas.- 1. Mammary Gland.- 2. Bladder and Kidney.- 3. Colon.- 4. Prostate.- II. Other Malignancies.- 1. Melanomas.- 2. Gliomas.- 3. Sarcomas.- C. Summary.- References.- 17 The Chalones.- A. Introduction.- I. Definition and Properties.- II. Limitations of This Chapter.- III. The Name.- IV. Theoretical and Biological Background.- 1. Theory.- 2. Biology.- B. Sources of Chalones: Methods to Extract, Purify and Measure Their Effects.- I. Sources of Chalones.- II. Methods to Assess Chalone-Mediated Growth Inhibition.- III. Methods to Purify and Characterize Chalones.- C. Some Chalone Properties.- I. Tissue or Cell Line Specificity or Preference.- II. Species Non-specificity.- III. Sites of Attack in the Cell Cycle.- IV. Reversibility and Turnover Time of Chalones.- V. Chalones and Stimulators of Cell Proliferation.- VI. Dose-Response Relationship.- VII. Chemical Composition.- D. Mechanisms of Action.- I. General Considerations.- II. Do Chalones Primarily Inhibit Proliferation, or Do They Promote Maturation?.- III. Possible Relationship to Hormones and Cyclic AMP.- IV. Do Chalones Act via the Cell Membranes?.- E. Chalones and Malignancy.- I. General Considerations.- II. Chalones in Malignant Tumors.- III. Chalones and Carcinogenesis.- F. Possible Practical Uses of Chalones.- I. For Diagnostic Purposes.- II. For Therapeutic Purposes.- 1. Diseases with Benign Increased Cell Proliferation.- 2. Treatment of Cancer.- 3. Immunosuppression.- 4. A Male Antifertility Drug.- G. The Various Chalones.- I. The Epidermal Chalones.- 1. The Epidermis.- 2. The Epidermal G2 Chalone.- 3. The Epidermal G1 Chalone.- 4. Conclusions About Epidermal Chalones.- II. Chalones from Epidermal Derivatives.- 1. The Mammary Gland Chalone?.- 2. Sebaceous Gland, Sweat Gland and Hair Follicle Chalones?.- a) Sebaceous Gland.- b) Sweat Gland (Eccrine) Chalone.- c) Hair Root Chalone.- III. The Melanocyte Chalone (?).- IV. Chalones in the Cells of the Red Bone Marrow, Blood and Lymphoid System.- 1. The Granulocyte Chalone.- 2. The Erythrocyte Chalone.- 3. The Lymphocyte Chalone(s).- 4. The Monocyte (Macrophage) Chalone (?).- 5. The Platelet Chalone (?).- 6. The Stem Cell Chalone (?).- 7. Conclusion About Blood Cell Chalones.- V. Chalones in the Gastro-intestinal Tract.- 1. Salivary Gland Chalone (?).- 2. Oral Mucosa, Oesophageal and Forestomach Chalone.- 3. Gastric Chalone (?).- 4. Small Intestinal Chalone.- 5. A Colon Chalone?.- VI. The Liver Chalones.- VII. Kidney Chalones (?).- VIII. Chalones in the Male Reproductive Organs (?).- 1. Testicular Chalone.- 2. A Chalone in the Seminal Vesicle?.- 3. A Prostatic Chalone?.- IX. Ascites Tumour Cell Chalones.- 1. JBI Ascites Tumour Cell Chalone.- 2. Ehrlich Ascites Tumour Cell Chalone.- X. Connective Tissue and Fibroblast Chalones (?).- XI. Chalones of the Lung?.- XII. Other Chalones Indicated.- 1. Lens of the Eye.- 2. Endothelial Chalone?.- 3. Smooth Muscle Chalone?.- 4. Heart Muscle Chalone?.- 5. Placental Chalone?.- References.- Addendum.- Author Index.