Topological Degree Approach to Bifurcation Problems by Michal FeäkanTopological Degree Approach to Bifurcation Problems by Michal Feäkan

Topological Degree Approach to Bifurcation Problems

byMichal Feäkan

Paperback | November 30, 2010

Pricing and Purchase Info

$164.43 online 
$191.95 list price save 14%
Earn 822 plum® points

Prices and offers may vary in store


In stock online

Ships free on orders over $25

Not available in stores


1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.
Title:Topological Degree Approach to Bifurcation ProblemsFormat:PaperbackDimensions:261 pages, 23.5 × 15.5 × 0.17 inPublished:November 30, 2010Publisher:Springer-Verlag/Sci-Tech/TradeLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:9048179696

ISBN - 13:9789048179695


Table of Contents

1. Introduction 1.1. Preface 1.2. An Illustrative Perturbed Problem 1.3. A Brief Summary of the Book 2. Theoretical Background 2.1. Linear Functional Analysis 2.2. Nonlinear Functional Analysis 2.2.1. Implicit Function Theorem 2.2.2. Lyapunov-Schmidt Method 2.2.3. Leray-Schauder Degree 2.3. Differential Topology 2.3.1. Differentiable Manifolds 2.3.2. Symplectic Surfaces 2.3.3. Intersection Numbers of Manifolds 2.3.4. Brouwer Degree on Manifolds 2.3.5. Vector Bundles 2.3.6. Euler Characteristic 2.4. Multivalued Mappings 2.4.1. Upper Semicontinuity 2.4.2. Measurable Selections 2.4.3. Degree Theory for Set-Valued Maps 2.5. Dynamical Systems 2.5.1. Exponential Dichotomies 2.5.2. Chaos in Discrete Dynamical Systems 2.5.3. Periodic O.D.Eqns 2.5.4. Vector Fields 2.6. Center Manifolds For Infinite Dimensions 3. Bifurcation of Periodic Solutions 3.1. Bifurcation of Periodics from Homoclinics I 3.1.1. Discontinuous O.D.Eqns 3.1.2. The Linearized Equation 3.1.3. Subharmonics for Regular Periodic Perturbations 3.1.4. Subharmonics for Singular Periodic Perturbations 3.1.5. Subharmonics for Regular Autonomous Perturbations 3.1.6. Applications to Discontinuous O.D.Eqns 3.1.7. Bounded Solutions Close to Homoclinics 3.2. Bifurcation of Periodics from Homoclinics II 3.2.1. Singular Discontinuous O.D.Eqns 3.2.2. Linearized Equations 3.2.3. Bifurcation of Subharmonics 3.2.4. Applications to Singular Discontinuous O.D.Eqns 3.3. Bifurcation of Periodics from Periodics 3.3.1. Discontinuous O.D.Eqns 3.3.2. Linearized Problem 3.3.3. Bifurcation of Periodics in Nonautonomous Systems 3.3.4. Bifurcation of Periodics in Autonomous Systems 3.3.5. Applications to Discontinuous O.D.Eqns 3.3.6. Concluding Remarks 3.4. Bifurcation of Periodics in Relay Systems 3.4.1. Systems with Relay Hysteresis 3.4.2. Bifurcation of Periodics 3.4.3. Third-Order O.D.Eqns with Small Relay Hysteresis 3.5. Nonlinear Oscillators with Weak Couplings 3.5.1. Weakly Coupled Systems 3.5.2. Forced Oscillations from Single Periodics 3.5.3. Forced Oscillations from Families of Periodics 3.5.4. Applications to Weakly Coupled Nonlinear Oscillators 4. Bifurcation of Chaotic Solutions 4.1. Chaotic Differential Inclusions 4.1.1. Nonautonomous Discontinuous O.D.Eqns 4.1.2. The Linearized equation 4.1.3. Bifurcation of Chaotic Solutions 4.1.4. Chaos from Homoclinic Manifolds 4.1.5. Almost and Quasi Periodic Discontinuous O.D.Eqns 4.2. Chaos in Periodic Differential Inclusions 4.2.1. Regular Periodic Perturbations 4.2.2. Singular Differential Inclusions 4.3. More about Homoclinic Bifurcations 4.3.1. Transversal Homoclinic Crossing Discontinuity 4.3.2. Homoclinic Sliding on Discontinuity 5. Topological Transversality 5.1. Topological Transversality and Chaos 5.1.1. Topologically Transversal Invariant Sets 5.1.2. Difference Boundary Value Problems 5.1.3. Chaotic Orbits 5.1.4. Periodic Points and Extensions on Invariant Compact Subsets 5.1.5. Perturbed Topological Transversality 5.2. Topological Transversality and Reversibility 5.2.1. Period Blow-up 5.2.2. Period Blow-up for Reversible Diffeomorphisms 5.2.3. Perturbed Period Blow-up 5.2.4. Perturbed Second Order O.D.Eqns 5.3. Chains of Reversible Oscillators 5.3.1. Homoclinic Period Blow-up for Breathers 5.