Virtual Synthesis Of Nanosystems By Design: From First Principles To Applications

Hardcover | February 17, 2015

byLiudmila PozharEditorLiudmila Pozhar

not yet rated|write a review
This is the only book on a novel fundamental method that uses quantum many body theoretical approach to synthesis of nanomaterials by design. This approach allows the first-principle prediction of transport properties of strongly spatially non-uniform systems, such as small QDs and molecules, where currently used DFT-based methods either fail, or have to use empirical parameters. The book discusses modified algorithms that allow mimicking experimental synthesis of novel nanomaterials---to compare the results with the theoretical predictions--and provides already developed electronic templates of sub-nanoscale systems and molecules that can be used as components of larger materials/fluidic systems. The only publication on quantum many body theoretical approach to synthesis of nano- and sub-nanoscale systems by design. Novel and existing many-body field theoretical, computational methods are developed and used to realize the theoretical predictions for materials for IR sensors, light sources, information storage and processing, electronics, light harvesting, etc. Novel algorithms for EMD and NEMD molecular simulations of the materials synthesis processes and charge-spin transport in synthesized systems are developed and described. Includes the first ever models of Ni-O quantum wires supported by existing experimental data. All-inclusive analysis of existing experimental data versus the obtained theoretical predictions and nanomaterials templates.

Pricing and Purchase Info

$185.95

Ships within 1-2 weeks
Ships free on orders over $25

From the Publisher

This is the only book on a novel fundamental method that uses quantum many body theoretical approach to synthesis of nanomaterials by design. This approach allows the first-principle prediction of transport properties of strongly spatially non-uniform systems, such as small QDs and molecules, where currently used DFT-based methods eith...

Dr. Liudmila A. Pozhar is the Chief Scientist with PermaNature, LLC, a company that develops and manages research projects in sciences, engineering and education, and provides professional help and advice to undergraduate and graduate students seeking professional degrees in sciences and engineering. Since 1995 she has also served as A...
Format:HardcoverDimensions:382 pages, 9.41 × 7.24 × 0.98 inPublished:February 17, 2015Publisher:Elsevier Science & TechLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0123969840

ISBN - 13:9780123969842

Look for similar items by category:

Customer Reviews of Virtual Synthesis Of Nanosystems By Design: From First Principles To Applications

Reviews

Extra Content

Table of Contents

Part 1. QUANTUM STATISTICAL MECHANICS FUNDAMENTALS
CHAPTER 1. Transport Properties of Spatially Inhomogeneous Quantum Systems from the First Principles
CHAPTER 2. Quantum Properties of Small Systems at Equilibrium: The First Principle Calculations
CHAPTER 3. Small Quantum Dots of Traditional III-V Semiconductor Compounds
Part 2. APPLICATIONS: CHARGE AND SPIN TRANSPORT IN MOLECULES, SMALL QDS AND QWS
CHAPTER 4. Small Quantum Dots Of Gallium and Indium Arsenide Phosphides: Opto-electronic Properties, Spin Polarization and A Composition Effect Of Quantum Confinement
CHAPTER 5. Small Quantum Dots of Diluted Magnetic III-V Semiconductor Compounds
CHAPTER 6. Small Quantum Dots of Indium Nitrides
CHAPTER 7. Nickel Oxide Quantum Dots and Nanopolymer Quantam Wires
CHAPTER 8. Small Quantum Dots Of Indium Nitrides with Special Magneto-optic Properties
APPENDIX. Examples of Virtual Templates of Small Quantum Dots and Wires of Semiconductor Compound Elements