Visualizing Quaternions

Other | February 1, 2006

byHanson, Andrew J., Andrew J. Hanson

not yet rated|write a review
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.
The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important-a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions.

* Richly illustrated introduction for the developer, scientist, engineer, or student in computer graphics, visualization, or entertainment computing.
* Covers both non-mathematical and mathematical approaches to quaternions.
* Companion website with an assortment of quaternion utilities and sample code, data sets for the book's illustrations, and Mathematica notebooks with essential algebraic utilities.

Pricing and Purchase Info

$96.99 online
$125.92 list price (save 22%)
In stock online
Ships free on orders over $25

From the Publisher

Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited fo...

Andrew J. Hanson is a professor of computer science at Indiana University in Bloomington, Indiana, and has taught courses in computer graphics, computer vision, programming languages, and scientific visualization. He received a BA in chemistry and physics from Harvard College and a PhD in theoretical physics from MIT. Before coming to ...

other books by Hanson, Andrew J.

Once Upon a Wish
Once Upon a Wish

Kobo ebook|Sep 3 2012

$4.29 online$5.50list price(save 22%)
Empty Nest: Tales from Grace Chapel Inn
Empty Nest: Tales from Grace Chapel Inn

Kobo ebook|Apr 3 2012

$10.09 online$13.11list price(save 23%)
Never Give Up
Never Give Up

Kobo ebook|Mar 23 2011

$10.09 online$13.11list price(save 23%)
see all books by Hanson, Andrew J.
Format:OtherDimensions:600 pages, 1 × 1 × 1 inPublished:February 1, 2006Publisher:Morgan KaufmannLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0080474772

ISBN - 13:9780080474779

Customer Reviews of Visualizing Quaternions

Reviews

Extra Content

Table of Contents

About the Author; Preface; I Elements of Quaternions; 1 The Discovery of Quaternions; 2 Rotations Take the Stage; 3 Basic Notation; 4 What Are Quaternions?; 5 Roadmap to Quaternion Visualization; 6 Basic Rotations; 7 Visualizing Algebraic Structure; 8 Visualizing Quaternion Spheres; 9 Visualizing Logarithms and Exponentials; 10 Basic Interpolation Methods; 11 Logarithms and Exponentials for Rotations; 12 Seeing Elementary Quaternion Frames; 13 Quaternions and the Belt Trick; 14 More about the Rolling Ball: Order-Dependence is Good; 15 More About Gimbal Lock; II Advanced Quaternion Applications and Topics; 16 Alternative Ways to Write Down Quaternions; 17 Efficiency and Complexity Issues; 18 Advanced Sphere Visualization; 19 Orientation Frames and Rotations; 20 Quaternion Frame Methods; 21 Quaternion Curves and Surfaces; 22 Quaternion Curves; 23 Quaternion Surfaces; 24 Quaternion Volumes; 25 Quaternion Maps of Streamlines and Flow Fields; 26 Quaternion Interpolation; 27 Controlling Quaternion Animation; 28 Global Minimization: Advanced Interpolation; 29 Quaternion Rotator Dynamics; 30 Spherical Riemann Geometry; 31 Quaternion Barycentric Coordinates; 32 Quaternions and Representations of the Rotation Group; 33 Quaternions and the Four Division Algebras; 34 Clifford Algebras; 35 Conclusion; A Notation; B 2D Complex Frames; C 3D Quaternion Frames; D Frame and Surface Evolution; E Quaternion Survival Kit; F Quaternion Methods; G Quaternion Path Optimization Using Evolver; H The Relationship of 4D Rotations to Quaternions; I Quaternion Frame Integration; J Hyperspherical Geometry; References; Index