Wavelets In Physics by J. C. van den BergWavelets In Physics by J. C. van den Berg

Wavelets In Physics

EditorJ. C. van den Berg

Paperback | April 19, 2004

Pricing and Purchase Info

$139.44

Earn 697 plum® points

Prices and offers may vary in store

Quantity:

In stock online

Ships free on orders over $25

Not available in stores

about

This book surveys the application of the recently developed technique of the wavelet transform to a wide range of physical fields, including astrophysics, turbulence, meteorology, plasma physics, atomic and solid state physics, multifractals occurring in physics, biophysics (in medicine and physiology) and mathematical physics. The wavelet transform can analyze scale-dependent characteristics of a signal (or image) locally, unlike the Fourier transform, and more flexibly than the windowed Fourier transform developed by Gabor fifty years ago. The continuous wavelet transform is used mostly for analysis, but the discrete wavelet transform allows very fast compression and transmission of data and speeds up numerical calculation, and is applied, for example, in the solution of partial differential equations in physics. This book will be of interest to graduate students and researchers in many fields of physics, and to applied mathematicians and engineers interested in physical application.
Title:Wavelets In PhysicsFormat:PaperbackDimensions:478 pages, 9.72 × 6.85 × 0.94 inPublished:April 19, 2004Publisher:Cambridge University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0521533538

ISBN - 13:9780521533539

Reviews

Table of Contents

A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.