Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains de Irina MitreaMulti-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains de Irina Mitrea

Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz Domains

deIrina Mitrea, Marius Mitrea

Couverture souple | 5 janvier 2013 | Anglais

Détails sur le prix et l’achat

104,68 $ en ligne 
110,50 $ prix courant rabais 5 %
Obtenez 523 points privilègeᴹᴰ

Les prix et les offres peuvent différer de ceux en magasin

Quantité :

En stock en ligne

Cet article est admissible à l’EXPÉDITION GRATUITE pour les commandes de 25 $ et plus.

Non disponible en magasin

description

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach.

This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces,Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces.

Titre :Multi-Layer Potentials and Boundary Problems: for Higher-Order Elliptic Systems in Lipschitz DomainsFormat :Couverture soupleDimensions :424 pagesPublié le :5 janvier 2013Publié par :Springer-Verlag/Sci-Tech/TradeLangue :Anglais

Les ISBN ci-dessous sont associés à ce titre :

ISBN - 10 :364232665X

ISBN - 13 :9783642326653

Reviews

Table des matières

1 Introduction.- 2 Smoothness scales and Caldeón-Zygmund theory in the scalar-valued case.- 3 Function spaces of Whitney arrays.- 4 The double multi-layer potential operator.- 5 The single multi-layer potential operator.- 6 Functional analytic properties of multi-layer potentials and boundary value problems.