The Oxford Handbook of Random Matrix Theory by Gernot AkemannThe Oxford Handbook of Random Matrix Theory by Gernot Akemann

The Oxford Handbook of Random Matrix Theory

EditorGernot Akemann, Jinho Baik, Philippe Di Francesco

Paperback | October 17, 2015

Pricing and Purchase Info


Earn 420 plum® points

Prices and offers may vary in store


Ships within 1-3 weeks

Ships free on orders over $25

Not available in stores


With a foreword by Freeman Dyson, the handbook brings together leading mathematicians and physicists to offer a comprehensive overview of random matrix theory, including a guide to new developments and the diverse range of applications of this approach.In part one, all modern and classical techniques of solving random matrix models are explored, including orthogonal polynomials, exact replicas or supersymmetry.
Gernot Akemann gained his PhD in theoretical physics at Leibniz Universitat Hannover in 1996. He was an EU Marie-Curie Fellow from 1996 until 1998. He has worked at MPIK Heidelberg and later at CEA SPhT, where he held a Heisenberg fellowship. He is currently Professor for Mathematical Physics at the Faculty of Physics, Bielefeld Unive...
Title:The Oxford Handbook of Random Matrix TheoryFormat:PaperbackDimensions:960 pages, 9.69 × 6.73 × 1.93 inPublished:October 17, 2015Publisher:Oxford University PressLanguage:English

The following ISBNs are associated with this title:

ISBN - 10:0198744196

ISBN - 13:9780198744191

Table of Contents

Freeman Dyson: ForwardI Introduction1. Gernot Akenmann, Jinho Baik and Philippe Di Francesco: Guide to the Handbook2. Oriol Bohigas and Hans Weidenmuller: HistoryII Properties of Random Matrix Theory3. Martin Zirnbauer: Symmetry Classes4. Greg W. Anderson: Spectral Statisitics of Unitary Emsembles5. Mark Adler: Spectral Statistics of Orthogonal and Symplectic Ensembles6. Arno Kuijlaars: Universality7. Thomas Guhr: Supersymmetry8. Eugene Kanzieper: Replica Approach9. Alexander Its: Painleve Transcendents10. Pierre van Moerbeke: Random Matrices and Integrable Systems11. Alexei Borodin: Determinantal Point Processes12. Vladimir Kravtsov: Random Matrix Representations of Critical Statistics13. Zdzislaw Burda and Jerzy Jurkiewicz: Heavy-Tailed Random Matrices14. Giovanni Cicuta and Luca Molinari: Phase Transitions15. Marco Bertola: Two-Matrix Models and Biorthogonal Polynomials16. Nicolas Orantin: Loop Equation Method17. Alexei Morozov: Unitary Integrals and Related Matrix Models18. Boris Khoruzhenko and Hans-Jurgen Sommers: Non-Hermitian Ensembles19. Edouard Brezin and Sinobu Hikami: Characteristic Polynomials20. Peter Forrester: Beta Ensembles21. Gerard Ben Arous and Guionnet: Wigner Matrices22. Roland Speicher: Free Probability Theory23. Thomas Spencer: Random Banded and Sparse MatricesIII Applications of Random Matrix Theory24. Jon Keating and Nina Snaith: Number Theory25. Grigori Olshanski: Random Permutations26. Jeremie Bouttier: Enumeration of Maps27. Poul Zinn-Justin and Jean-Bernard Zuber: Knot Theory28. Noureddine El Karoui: Multivariate Statistics29. Leonid Chekhov: Algrebraic Geometry30. Ian Kostov: Two-Dimensional Quantum Gravity31. Marcos Marino: String Theory32. Jac Verbaarschot: Quantum Chromodynamics33. Sebastian Muller and Martin Sieber: Quantum Chaos and Quantum Graphs34. Yan Fyodorov and Dmitry Savin: Resonance Scattering in Chaotic Systems35. Carlo W. J. Beenakker: Condensed Matter Physics36. Carlo W. J. Beenakker: Optics37. Satya N. Majumdar: Extreme Eigenvalues of Wishart Matrices and Entangled Bipartite System38. Patrik L. Ferrari and Herbert Spohn: Random Growth Models39. Anton Zabrodin: Laplacian Growth40. Jean-Phillipe Bouchard and Marc Potters: Financial Applications41. Antonia Tulino and Sergio Verdu: Information Theory42. Graziano Vernizzi and Henri Orland: Ribonucleic Acid Folding43. Geoff Rodgers and Taro Nagao: Complex Networks